Your browser doesn't support javascript.
loading
Proliferation saturation index in an adaptive Bayesian approach to predict patient-specific radiotherapy responses.
Sunassee, Enakshi D; Tan, Dean; Ji, Nathan; Brady, Renee; Moros, Eduardo G; Caudell, Jimmy J; Yartsev, Slav; Enderling, Heiko.
  • Sunassee ED; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Tan D; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Ji N; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Brady R; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Moros EG; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Caudell JJ; Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Yartsev S; Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA.
  • Enderling H; London Health Sciences Centre, London Regional Cancer Program , London , ON , Canada.
Int J Radiat Biol ; 95(10): 1421-1426, 2019 10.
Article en En | MEDLINE | ID: mdl-30831050
ABSTRACT

Purpose:

Radiotherapy prescription dose and dose fractionation protocols vary little between individual patients having the same tumor grade and stage. To personalize radiotherapy a predictive model is needed to simulate radiation response. Previous modeling attempts with multiple variables and parameters have been shown to yield excellent data fits at the cost of non-identifiability and clinically unrealistic results. Materials and

methods:

We develop a mathematical model based on a proliferation saturation index (PSI) that is a measurement of pre-treatment tumor volume-to-carrying capacity ratio that modulates intrinsic tumor growth and radiation response rates. In an adaptive Bayesian approach, we utilize an increasing number of data points for individual patients to predict patient-specific responses to subsequent radiation doses.

Results:

Model analysis shows that using PSI as the only patient-specific parameter, model simulations can fit longitudinal clinical data with high accuracy (R2=0.84). By analyzing tumor response to radiation using daily CT scans early in the treatment, response to the remaining treatment fractions can be predicted after two weeks with high accuracy (c-index = 0.89).

Conclusion:

The PSI model may be suited to forecast treatment response for individual patients and offers actionable decision points for mid-treatment protocol adaptation. The presented work provides an actionable image-derived biomarker prior to and during therapy to personalize and adapt radiotherapy.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Radioterapia / Planificación de la Radioterapia Asistida por Computador / Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Radioterapia / Planificación de la Radioterapia Asistida por Computador / Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Tipo de estudio: Guideline / Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article