Your browser doesn't support javascript.
loading
Additive-Assisted Novel Dual-Salt Electrolyte Addresses Wide Temperature Operation of Lithium-Metal Batteries.
Shangguan, Xuehui; Xu, Gaojie; Cui, Zili; Wang, Qinglei; Du, Xiaofan; Chen, Kai; Huang, Suqi; Jia, Guofeng; Li, Faqiang; Wang, Xiao; Lu, Di; Dong, Shanmu; Cui, Guanglei.
  • Shangguan X; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Xu G; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P. R. China.
  • Cui Z; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Wang Q; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Du X; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Chen K; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Huang S; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
  • Jia G; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Li F; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Wang X; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
  • Lu D; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P. R. China.
  • Dong S; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Key Laboratory of Salt Lake Resources Chemistry of Qinghai Province, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, P. R. China.
  • Cui G; Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
Small ; 15(16): e1900269, 2019 Apr.
Article en En | MEDLINE | ID: mdl-30848874
ABSTRACT
In this study, self-synthesized lithium trifluoro(perfluoro-tert-butyloxyl)borate (LiTFPFB) is combined with lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to formulate a novel 1 m dual-salt electrolyte, which contains lithium difluorophosphate (LiPO2 F2 ) additive and dominant carbonate solvents with low melting point and high boiling point. The addition of LiPO2 F2 into this novel dual-salt electrolyte dramatically improves cycleability and rate capability of a LiNi0.5 Mn0.3 Co0.2 O2 /Li (NMC/Li) battery, ranging from -40 to 90 °C. The NMC/Li batteries adopt a Li-metal anode with low thickness of 100 µm (even 50 µm) and a moderately high cathode mass loading level of 10 mg cm-2 . For the first time, this paper provides valuable perspectives for developing practical lithium-metal batteries over a wide temperature range.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article