Your browser doesn't support javascript.
loading
Observation of room-temperature polar skyrmions.
Das, S; Tang, Y L; Hong, Z; Gonçalves, M A P; McCarter, M R; Klewe, C; Nguyen, K X; Gómez-Ortiz, F; Shafer, P; Arenholz, E; Stoica, V A; Hsu, S-L; Wang, B; Ophus, C; Liu, J F; Nelson, C T; Saremi, S; Prasad, B; Mei, A B; Schlom, D G; Íñiguez, J; García-Fernández, P; Muller, D A; Chen, L Q; Junquera, J; Martin, L W; Ramesh, R.
  • Das S; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA. sujitdas@berkeley.edu.
  • Tang YL; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Hong Z; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Gonçalves MAP; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
  • McCarter MR; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
  • Klewe C; Department of Physics, University of California, Berkeley, CA, USA.
  • Nguyen KX; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Gómez-Ortiz F; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
  • Shafer P; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Santander, Spain.
  • Arenholz E; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Stoica VA; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Hsu SL; Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.
  • Wang B; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Ophus C; National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Liu JF; Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA.
  • Nelson CT; National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Saremi S; Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Prasad B; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  • Mei AB; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Schlom DG; Department of Materials Science and Engineering, University of California, Berkeley, CA, USA.
  • Íñiguez J; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
  • García-Fernández P; Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
  • Muller DA; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
  • Chen LQ; Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST), Esch/Alzette, Luxembourg.
  • Junquera J; Physics and Material Science Research Unit, University of Luxembourg, Belvaux, Luxembourg.
  • Martin LW; Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Santander, Spain.
  • Ramesh R; Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, USA.
Nature ; 568(7752): 368-372, 2019 04.
Article en En | MEDLINE | ID: mdl-30996320
ABSTRACT
Complex topological configurations are fertile ground for exploring emergent phenomena and exotic phases in condensed-matter physics. For example, the recent discovery of polarization vortices and their associated complex-phase coexistence and response under applied electric fields in superlattices of (PbTiO3)n/(SrTiO3)n suggests the presence of a complex, multi-dimensional system capable of interesting physical responses, such as chirality, negative capacitance and large piezo-electric responses1-3. Here, by varying epitaxial constraints, we discover room-temperature polar-skyrmion bubbles in a lead titanate layer confined by strontium titanate layers, which are imaged by atomic-resolution scanning transmission electron microscopy. Phase-field modelling and second-principles calculations reveal that the polar-skyrmion bubbles have a skyrmion number of +1, and resonant soft-X-ray diffraction experiments show circular dichroism, confirming chirality. Such nanometre-scale polar-skyrmion bubbles are the electric analogues of magnetic skyrmions, and could contribute to the advancement of ferroelectrics towards functionalities incorporating emergent chirality and electrically controllable negative capacitance.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article