Pre-magnetization for enhancing the iron-catalyzed activation of peroxymonosulfate via accelerating the corrosion of Fe0.
Water Sci Technol
; 79(7): 1287-1296, 2019 Apr.
Article
en En
| MEDLINE
| ID: mdl-31123228
Our findings proved that micron-scale zero-valent iron (mZVI) particles with pre-magnetization combined with peroxymonosulfate (PMS) can markedly enhance the removal of acid orange 7 (AO7). Investigation into the mechanism showed that PMS accelerated the corrosion of ZVI to release Fe2+ under acidic conditions, and the in-situ generated Fe2+ further activated PMS to produce SO4â¢- and â¢OH, resulting in AO7 removal. Further, the Lorentz force strengthened the convection in the solution and the field gradient force tended to move Fe2+ from a higher to a lower field gradient at the pre-magnetized ZVI (Pre-ZVI) particle surfaces, thus indicating that pre-magnetization promoted the corrosion of ZVI to release Fe2+, which resulted in the enhancement of PMS activation. Nano-scale ZVI (nZVI) was more effective than mZVI in activating PMS to degrade AO7, but the pre-magnetization effect on mZVI was better than on nZVI. AO7 removal increased with higher ZVI and PMS dosage, lower AO7 concentration, and acidic conditions (pH = 2, 3). This study helps to understand the reactive radicals-based oxidation process with application of pre-magnetized ZVI in activating PMS.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Peróxidos
/
Compuestos Azo
/
Contaminantes Químicos del Agua
/
Bencenosulfonatos
/
Purificación del Agua
Idioma:
En
Año:
2019
Tipo del documento:
Article