Your browser doesn't support javascript.
loading
3D bioprinting of collagen to rebuild components of the human heart.
Lee, A; Hudson, A R; Shiwarski, D J; Tashman, J W; Hinton, T J; Yerneni, S; Bliley, J M; Campbell, P G; Feinberg, A W.
  • Lee A; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Hudson AR; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Shiwarski DJ; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Tashman JW; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Hinton TJ; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Yerneni S; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Bliley JM; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Campbell PG; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
  • Feinberg AW; Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
Science ; 365(6452): 482-487, 2019 08 02.
Article en En | MEDLINE | ID: mdl-31371612
ABSTRACT
Collagen is the primary component of the extracellular matrix in the human body. It has proved challenging to fabricate collagen scaffolds capable of replicating the structure and function of tissues and organs. We present a method to 3D-bioprint collagen using freeform reversible embedding of suspended hydrogels (FRESH) to engineer components of the human heart at various scales, from capillaries to the full organ. Control of pH-driven gelation provides 20-micrometer filament resolution, a porous microstructure that enables rapid cellular infiltration and microvascularization, and mechanical strength for fabrication and perfusion of multiscale vasculature and tri-leaflet valves. We found that FRESH 3D-bioprinted hearts accurately reproduce patient-specific anatomical structure as determined by micro-computed tomography. Cardiac ventricles printed with human cardiomyocytes showed synchronized contractions, directional action potential propagation, and wall thickening up to 14% during peak systole.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Colágeno / Miocitos Cardíacos / Bioimpresión / Impresión Tridimensional / Ventrículos Cardíacos / Modelos Anatómicos Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Colágeno / Miocitos Cardíacos / Bioimpresión / Impresión Tridimensional / Ventrículos Cardíacos / Modelos Anatómicos Límite: Humans Idioma: En Año: 2019 Tipo del documento: Article