Your browser doesn't support javascript.
loading
Electrochemical Oxidation of 5-Hydroxymethylfurfural on Nickel Nitride/Carbon Nanosheets: Reaction Pathway Determined by In Situ Sum Frequency Generation Vibrational Spectroscopy.
Zhang, Nana; Zou, Yuqin; Tao, Li; Chen, Wei; Zhou, Ling; Liu, Zhijuan; Zhou, Bo; Huang, Gen; Lin, Hongzhen; Wang, Shuangyin.
  • Zhang N; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Zou Y; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Tao L; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Chen W; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Zhou L; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Liu Z; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Zhou B; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Huang G; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
  • Lin H; i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, 215123, P. R. China.
  • Wang S; State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, Provincial Hunan Key Laboratory for Graphene Materials and Devices, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
Angew Chem Int Ed Engl ; 58(44): 15895-15903, 2019 10 28.
Article en En | MEDLINE | ID: mdl-31452306
ABSTRACT
2,5-Furandicarboxylic acid was obtained from the electrooxidation of 5-hydroxymethylfurfural (HMF) with non-noble metal-based catalysts. Moreover, combining the biomass oxidation with the hydrogen evolution reaction (HER) increased the energy conversion efficiency of an electrolyzer and also generated value-added products at both electrodes. Here, the reaction pathway on the surface of a carbon-coupled nickel nitride nanosheet (Ni3 N@C) electrode was evaluated by surface-selective vibrational spectroscopy using sum frequency generation (SFG) during the electrochemical oxidation. The Ni3 N@C electrode shows catalytic activities for HMF oxidation and the HER. As the first in situ SFG study on transition-metal nitride for the electrooxidation upgrade of HMF, this work not only demonstrates that the reaction pathway of electrochemical oxidation but also provides an opportunity for nonprecious metal nitrides to simultaneously upgrade biomass and produce H2 under ambient conditions.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2019 Tipo del documento: Article