Your browser doesn't support javascript.
loading
Dietary Sugars Alter Hepatic Fatty Acid Oxidation via Transcriptional and Post-translational Modifications of Mitochondrial Proteins.
Softic, Samir; Meyer, Jesse G; Wang, Guo-Xiao; Gupta, Manoj K; Batista, Thiago M; Lauritzen, Hans P M M; Fujisaka, Shiho; Serra, Dolors; Herrero, Laura; Willoughby, Jennifer; Fitzgerald, Kevin; Ilkayeva, Olga; Newgard, Christopher B; Gibson, Bradford W; Schilling, Birgit; Cohen, David E; Kahn, C Ronald.
  • Softic S; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Hepatology, Nut
  • Meyer JG; Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA.
  • Wang GX; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  • Gupta MK; Islet Cell and Regenerative Medicine, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  • Batista TM; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  • Lauritzen HPMM; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  • Fujisaka S; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA; First Department of Internal Medicine, University of Toyama, Toyama 930-0194, Japan.
  • Serra D; School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain.
  • Herrero L; School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona 08028, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain.
  • Willoughby J; Alnylam Pharmaceuticals Inc., Cambridge, MA 021428, USA.
  • Fitzgerald K; Alnylam Pharmaceuticals Inc., Cambridge, MA 021428, USA.
  • Ilkayeva O; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
  • Newgard CB; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Departments of Pharmacology & Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27701, USA.
  • Gibson BW; Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA.
  • Schilling B; Chemistry & Mass Spectrometry, Buck Institute for Research on Aging, Novato, CA 94945, USA.
  • Cohen DE; Division of Gastroenterology and Hepatology, Weill Cornell Medical College New York, New York, NY 10021, USA.
  • Kahn CR; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA. Electronic address: c.ronald.kahn@joslin.harvard.edu.
Cell Metab ; 30(4): 735-753.e4, 2019 10 01.
Article en En | MEDLINE | ID: mdl-31577934
ABSTRACT
Dietary sugars, fructose and glucose, promote hepatic de novo lipogenesis and modify the effects of a high-fat diet (HFD) on the development of insulin resistance. Here, we show that fructose and glucose supplementation of an HFD exert divergent effects on hepatic mitochondrial function and fatty acid oxidation. This is mediated via three different nodes of regulation, including differential effects on malonyl-CoA levels, effects on mitochondrial size/protein abundance, and acetylation of mitochondrial proteins. HFD- and HFD plus fructose-fed mice have decreased CTP1a activity, the rate-limiting enzyme of fatty acid oxidation, whereas knockdown of fructose metabolism increases CPT1a and its acylcarnitine products. Furthermore, fructose-supplemented HFD leads to increased acetylation of ACADL and CPT1a, which is associated with decreased fat metabolism. In summary, dietary fructose, but not glucose, supplementation of HFD impairs mitochondrial size, function, and protein acetylation, resulting in decreased fatty acid oxidation and development of metabolic dysregulation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Mitocondriales / Ácidos Grasos / Dieta Alta en Grasa / Azúcares de la Dieta / Fructosa / Hígado / Obesidad Límite: Animals Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Mitocondriales / Ácidos Grasos / Dieta Alta en Grasa / Azúcares de la Dieta / Fructosa / Hígado / Obesidad Límite: Animals Idioma: En Año: 2019 Tipo del documento: Article