Your browser doesn't support javascript.
loading
Low power all optical switching and implementation of universal logic gates using micro-bubbles in semiconductor nanocrystal solutions.
Nanotechnology ; 31(5): 055401, 2020 Jan 24.
Article en En | MEDLINE | ID: mdl-31627208
ABSTRACT
We describe optical switching in solutions of semiconductor nanocrystals illuminated by a 404 nm continuous wave laser source, driven by the formation of a micro-bubble of solvent vapor in the solution. Low boiling solvents such as hexane show an oscillatory modulation of transmitted light intensity (period ∼4 s) while solvents with intermediate boiling points such as toluene give a stable switching response. An on/off ratio of 83% is observed in the transmitted pump beam. Using this, a pump beam (404 nm, 80 mW continuous wave) was shown to reversibly switch the state of a probe laser (630 nm, 5 mW continuous wave). This switch thus serves as an optical analog of an electronic transistor and demonstrates the potential for all optical switching of low power light beams. Further, all optical universal logic gates, NAND and NOR, were also demonstrated using the micro-bubble switch.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article