Your browser doesn't support javascript.
loading
Ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative.
Lamy, Kévin; Portafaix, Thierry; Josse, Béatrice; Brogniez, Colette; Godin-Beekmann, Sophie; Bencherif, Hassan; Revell, Laura; Akiyoshi, Hideharu; Bekki, Slimane; Hegglin, Michaela I; Jöckel, Patrick; Kirner, Oliver; Marecal, Virginie; Morgenstern, Olaf; Stenke, Andrea; Zeng, Guang; Abraham, N Luke; Archibald, Alexander T; Butchart, Neil; Chipperfield, Martyn P; Di Genova, Glauco; Deushi, Makoto; Dhomse, Sandip S; Hu, Rong-Ming; Kinnison, Douglas; Michou, Martine; O'Connor, Fiona M; Oman, Luke D; Pitari, Giovanni; Plummer, David A; Pyle, John A; Rozanov, Eugene; Saint-Martin, David; Sudo, Kengo; Tanaka, Taichu Y; Visioni, Daniele; Yoshida, Kohei.
  • Lamy K; LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France.
  • Portafaix T; LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France.
  • Josse B; Centre National de Recherches Météorologiques (CNRM) UMR 3589, Météo-France/CNRS, Toulouse, France.
  • Brogniez C; Laboratoire d'Optique Atmosphérique (LOA), Université de Lille, Faculté des Sciences et Technologies, Villeneuve d'Ascq, France.
  • Godin-Beekmann S; Laboratoire Atmosphères, Milieux, Observations Spatiales, Service d'Aéronomie (LATMOS), CNRS, Institut Pierre Simon Laplace, Pierre et Marie Curie University, Paris, France.
  • Bencherif H; LACy, Laboratoire de l'Atmosphère et des Cyclones (UMR 8105 CNRS, Université de La Réunion, Météo-France), Saint-Denis de La Réunion, France.
  • Revell L; School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa.
  • Akiyoshi H; Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland.
  • Bekki S; Bodeker Scientific, Christchurch, New Zealand.
  • Hegglin MI; School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.
  • Jöckel P; National Institute of Environmental Studies (NIES), Tsukuba, Japan.
  • Kirner O; Laboratoire Atmosphères, Milieux, Observations Spatiales, Service d'Aéronomie (LATMOS), CNRS, Institut Pierre Simon Laplace, Pierre et Marie Curie University, Paris, France.
  • Marecal V; Department of Meteorology, University of Reading, Reading, UK.
  • Morgenstern O; Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Germany.
  • Stenke A; Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany.
  • Zeng G; Centre National de Recherches Météorologiques (CNRM) UMR 3589, Météo-France/CNRS, Toulouse, France.
  • Abraham NL; National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand.
  • Archibald AT; Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland.
  • Butchart N; National Institute of Water and Atmospheric Research (NIWA), Wellington, New Zealand.
  • Chipperfield MP; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Di Genova G; National Centre for Atmospheric Science, U.K.
  • Deushi M; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Dhomse SS; Met Office Hadley Centre (MOHC), Exeter, UK.
  • Hu RM; School of Earth and Environment, University of Leeds, Leeds, UK.
  • Kinnison D; Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy.
  • Michou M; Meteorological Research Institute (MRI), Tsukuba, Japan.
  • O'Connor FM; School of Earth and Environment, University of Leeds, Leeds, UK.
  • Oman LD; Laboratoire Atmosphères, Milieux, Observations Spatiales, Service d'Aéronomie (LATMOS), CNRS, Institut Pierre Simon Laplace, Pierre et Marie Curie University, Paris, France.
  • Pitari G; National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA.
  • Plummer DA; Centre National de Recherches Météorologiques (CNRM) UMR 3589, Météo-France/CNRS, Toulouse, France.
  • Pyle JA; Met Office Hadley Centre (MOHC), Exeter, UK.
  • Rozanov E; National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC), Greenbelt, Maryland, USA.
  • Saint-Martin D; Department of Physical and Chemical Sciences, Universitá dell'Aquila, L'Aquila, Italy.
  • Sudo K; Environment and Climate Change Canada, Montréal, Canada.
  • Tanaka TY; Department of Chemistry, University of Cambridge, Cambridge, UK.
  • Visioni D; Institute for Atmospheric and Climate Science, ETH Zürich (ETHZ), Zürich, Switzerland.
  • Yoshida K; Physikalisch-Meteorologisches Observatorium Davos World Radiation Centre, Davos Dorf, Switzerland.
Atmos Chem Phys Discuss ; 19(15): 10087-10110, 2019.
Article en En | MEDLINE | ID: mdl-31632450
We have derived values of the Ultraviolet Index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between -5.9% and 10.6%. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2-4%) in the tropical belt (30°N-30°S). For the mid-latitudes, we observed a 1.8 to 3.4 % increase in the Southern Hemisphere for RCP 2.6, 4.5 and 6.0, and found a 2.3% decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 to 5.5% for RCP 2.6, 4.5 and 6.0 and they are lower by 7.9% for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960-2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does.