Your browser doesn't support javascript.
loading
The Positive Allosteric Modulator of α2/3-Containing GABAA Receptors, KRM-II-81, Is Active in Pharmaco-Resistant Models of Epilepsy and Reduces Hyperexcitability after Traumatic Brain Injury.
Witkin, Jeffrey M; Li, Guanguan; Golani, Lalit K; Xiong, Wenhui; Smith, Jodi L; Ping, Xingjie; Rashid, Farjana; Jahan, Rajwana; Cerne, Rok; Cook, James M; Jin, Xiaoming.
  • Witkin JM; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Li G; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Golani LK; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Xiong W; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Smith JL; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Ping X; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Rashid F; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Jahan R; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Cerne R; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Cook JM; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
  • Jin X; Department of Neurologic Surgery, Indiana University School of Medicine, Indianapolis, Indiana (W.X., X.P., R.C., X.J.); Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin (J.M.W., G.L., L.K.G., F.R., R.J., J.M.C.); Department of Anatomy, Cell Biology,
J Pharmacol Exp Ther ; 372(1): 83-94, 2020 01.
Article en En | MEDLINE | ID: mdl-31694876
ABSTRACT
The imidizodiazepine, 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-yl)oxazole (KRM-II-81), is selective for α2/3-containing GABAA receptors. KRM-II-81 dampens seizure activity in rodent models with enhanced efficacy and reduced motor-impairment compared with diazepam. In the present study, KRM-II-81 was studied in assays designed to detect antiepileptics with improved chances of impacting pharmaco-resistant epilepsies. The potential for reducing neural hyperactivity weeks after traumatic brain injury was also studied. KRM-II-81 suppressed convulsions in corneal-kindled mice. Mice with kainate-induced mesial temporal lobe seizures exhibited spontaneous recurrent hippocampal paroxysmal discharges that were significantly reduced by KRM-II-81 (15 mg/kg, orally). KRM-II-81 also decreased convulsions in rats undergoing amygdala kindling in the presence of lamotrigine (lamotrigine-insensitive model) (ED50 = 19 mg/kg, i.p.). KRM-II-81 reduced focal and generalized seizures in a kainate-induced chronic epilepsy model in rats (20 mg/kg, i.p., three times per day). In mice with damage to the left cerebral cortex by controlled-cortical impact, enduring neuronal hyperactivity was dampened by KRM-II-81 (10 mg/kg, i.p.) as observed through in vivo two-photon imaging of layer II/III pyramidal neurons in GCaMP6-expressing transgenic mice. No notable side effects emerged up to doses of 300 mg/kg KRM-II-81. Molecular modeling studies were conducted docking in the binding site of the α1ß3γ2L GABAA receptor showed that replacing the C8 chlorine atom of alprazolam with the acetylene of KRM-II-81 led to loss of the key interaction with α1His102, providing a structural rationale for its low affinity for α1-containing GABAA receptors compared with benzodiazepines such as alprazolam. Overall, these findings predict that KRM-II-81 has improved therapeutic potential for epilepsy and post-traumatic epilepsy. SIGNIFICANCE STATEMENT We describe the effects of a relatively new orally bioavailable small molecule in rodent models of pharmaco-resistant epilepsy and traumatic brain injury. KRM-II-81 is more potent and generally more efficacious than standard-of-care antiepileptics. In silico docking experiments begin to describe the structural basis for the relative lack of motor impairment induced by KRM-II-81. KRM-II-81 has unique structural and anticonvulsant effects, predicting its potential as an improved antiepileptic drug and novel therapy for post-traumatic epilepsy.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxazoles / Receptores de GABA-A / GABAérgicos / Epilepsia Refractaria / Lesiones Traumáticas del Encéfalo / Anticonvulsivantes Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oxazoles / Receptores de GABA-A / GABAérgicos / Epilepsia Refractaria / Lesiones Traumáticas del Encéfalo / Anticonvulsivantes Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article