Your browser doesn't support javascript.
loading
A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset.
Espinosa, Ricardo; Ponce, Hiram; Gutiérrez, Sebastián; Martínez-Villaseñor, Lourdes; Brieva, Jorge; Moya-Albor, Ernesto.
  • Espinosa R; Universidad Panamericana, Facultad de Ingeniería, Josemaría Escrivá de Balaguer 101, Aguascalientes, Aguascalientes, 20290, Mexico. Electronic address: respinosa@up.edu.mx.
  • Ponce H; Universidad Panamericana, Facultad de Ingeniería, Augusto Rodin 498, Ciudad de México, 03920, Mexico. Electronic address: hponce@up.edu.mx.
  • Gutiérrez S; Universidad Panamericana, Facultad de Ingeniería, Josemaría Escrivá de Balaguer 101, Aguascalientes, Aguascalientes, 20290, Mexico. Electronic address: jsgutierrez@up.edu.mx.
  • Martínez-Villaseñor L; Universidad Panamericana, Facultad de Ingeniería, Augusto Rodin 498, Ciudad de México, 03920, Mexico. Electronic address: lmartine@up.edu.mx.
  • Brieva J; Universidad Panamericana, Facultad de Ingeniería, Augusto Rodin 498, Ciudad de México, 03920, Mexico. Electronic address: jbrieva@up.edu.mx.
  • Moya-Albor E; Universidad Panamericana, Facultad de Ingeniería, Augusto Rodin 498, Ciudad de México, 03920, Mexico. Electronic address: emoya@up.edu.mx.
Comput Biol Med ; 115: 103520, 2019 12.
Article en En | MEDLINE | ID: mdl-31698242
The automatic recognition of human falls is currently an important topic of research for the computer vision and artificial intelligence communities. In image analysis, it is common to use a vision-based approach for fall detection and classification systems due to the recent exponential increase in the use of cameras. Moreover, deep learning techniques have revolutionized vision-based approaches. These techniques are considered robust and reliable solutions for detection and classification problems, mostly using convolutional neural networks (CNNs). Recently, our research group released a public multimodal dataset for fall detection called the UP-Fall Detection dataset, and studies on modality approaches for fall detection and classification are required. Focusing only on a vision-based approach, in this paper, we present a fall detection system based on a 2D CNN inference method and multiple cameras. This approach analyzes images in fixed time windows and extracts features using an optical flow method that obtains information on the relative motion between two consecutive images. We tested this approach on our public dataset, and the results showed that our proposed multi-vision-based approach detects human falls and achieves an accuracy of 95.64% compared to state-of-the-art methods with a simple CNN network architecture.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Accidentes por Caídas / Bases de Datos Factuales / Redes Neurales de la Computación / Aprendizaje Automático / Teléfono Inteligente Tipo de estudio: Diagnostic_studies Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Año: 2019 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Accidentes por Caídas / Bases de Datos Factuales / Redes Neurales de la Computación / Aprendizaje Automático / Teléfono Inteligente Tipo de estudio: Diagnostic_studies Límite: Adolescent / Adult / Female / Humans / Male Idioma: En Año: 2019 Tipo del documento: Article