Your browser doesn't support javascript.
loading
Selective Synthesis of Conjugated Chiral Macrocycles: Sidewall Segments of (-)/(+)-(12,4) Carbon Nanotubes with Strong Circularly Polarized Luminescence.
Wang, Jinyi; Zhuang, Guilin; Chen, Muqing; Lu, Dapeng; Li, Zhe; Huang, Qiang; Jia, Hongxing; Cui, Shengsheng; Shao, Xiang; Yang, Shangfeng; Du, Pingwu.
  • Wang J; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Zhuang G; College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province, 310032, China.
  • Chen M; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Lu D; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Li Z; Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
  • Huang Q; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Jia H; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Cui S; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Shao X; Department of Chemical Physics, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.
  • Yang S; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
  • Du P; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei,
Angew Chem Int Ed Engl ; 59(4): 1619-1626, 2020 Jan 20.
Article en En | MEDLINE | ID: mdl-31710148
Carbon nanotubes (CNTs) have unusual physical properties that are valuable for nanotechnology and electronics, but the chemical synthesis of chirality- and diameter-specific CNTs and π-conjugated CNT segments is still a great challenge. Reported here are the selective syntheses, isolations, characterizations, and photophysical properties of two novel chiral conjugated macrocycles ([4]cyclo-2,6-anthracene; [4]CAn2,6 ), as (-)/(+)-(12,4) carbon nanotube segments. These conjugated macrocyclic molecules were obtained using a bottom-up assembly approach and subsequent reductive elimination reaction. The hoop-shaped molecules can be directly viewed by a STM technique. In addition, chiral enantiomers with (-)/(+) helicity of the [4]CAn2,6 were successfully isolated by HPLC. The new tubular CNT segments exhibit large absorption and photoluminescence redshifts compared to the monomer unit. The carbon enantiomers are also observed to show strong circularly polarized luminescence (glum ≈0.1). The results reported here expand the scope of materials design for bottom-up synthesis of chiral macrocycles and enrich existing knowledge of their optoelectronic properties.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article