Your browser doesn't support javascript.
loading
Human umbilical cord mesenchymal stem cell-derived exosomes act via the miR-1263/Mob1/Hippo signaling pathway to prevent apoptosis in disuse osteoporosis.
Yang, Bao-Cheng; Kuang, Ming-Jie; Kang, Jia-Yu; Zhao, Jie; Ma, Jian-Xiong; Ma, Xin-Long.
  • Yang BC; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
  • Kuang MJ; Department of Orthopedics, The Provincial Hospital Affiliated to Shandong University, Shandong, 250014, China.
  • Kang JY; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
  • Zhao J; Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, People's Republic of China.
  • Ma JX; Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, People's Republic of China. Electronic address: mjx969@163.com.
  • Ma XL; Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China. Electronic address: maxinlong8686@126.com.
Biochem Biophys Res Commun ; 524(4): 883-889, 2020 04 16.
Article en En | MEDLINE | ID: mdl-32057365
Disuse osteoporosis (DOP) is a common complication resulting from the lack of or disuse of mechanical loading and has been unsatisfactorily treated. We hypothesized that exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSCs) could reduce bone marrow mesenchymal stem cell (BMSC) apoptosis in rat DOP via the miR-1263/Mob1/Hippo signaling pathway. To evaluate the function of exosomes derived from HUCMSCs (HUCMSC-Exos) in DOP, hind limb unloading (HLU)-induced DOP rat models were prepared. In vitro, the proliferation of BMSCs were evaluated using CCK-8 assays. Further, the apoptosis of BMSCs were evaluated using annexin V-FITC assay and Western blots. In vivo, the protective effects of HUCMSC-Exos were evaluated using HE staining and microCT analysis. The underlying molecular mechanism of exosome action on BMSC apoptosis through the miR-1263/Mob1/Hippo pathway was also investigated by high-throughput RNA sequencing, luciferase reporter assays, RNA-pull down assays and Western blots. The RNA-seq and q-PCR results showed that the level of miR-1263 was most abundant among differentially expressed microRNAs. Exosomal miR-1263 could bind to the 3'untranslated region (3' UTR) of Mob1 and exert its function by directly targeting Mob1 in recipient cells. The inhibition of Mob1 could activate YAP expression. Hippo inhibition reversed the in vitro HLU-induced apoptotic effect on BMSCs. The microCT and HE staining results indicated that HUCMSC-Exos ameliorated DOP in vivo. Exosomes derived from HUCMSCs are effective at inhibiting BMSC apoptosis and preventing rat DOP. This mechanism is mediated by the miR-1263/Mob1/Hippo signaling pathway.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Osteoporosis / Proteínas Serina-Treonina Quinasas / MicroARNs / Proteínas Adaptadoras Transductoras de Señales / Exosomas / Células Madre Mesenquimatosas Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Osteoporosis / Proteínas Serina-Treonina Quinasas / MicroARNs / Proteínas Adaptadoras Transductoras de Señales / Exosomas / Células Madre Mesenquimatosas Tipo de estudio: Etiology_studies / Prognostic_studies Límite: Animals / Humans Idioma: En Año: 2020 Tipo del documento: Article