Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl2 stresses.
Ecotoxicol Environ Saf
; 193: 110322, 2020 Apr 15.
Article
en En
| MEDLINE
| ID: mdl-32109582
The γ-aminobutyric acid (GABA) shunt is closely associated with plant tolerance; however, little is known about its mechanism. This study aimed to decipher the responses of the GABA shunt and related carbon-nitrogen metabolism in poplar seedlings (Populus alba × Populus glandulosa) treated with different NaCl and CdCl2 concentrations for 30 h. The results showed that the activities of glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) were activated, as well as α-ketoglutarate dehydrogenase (α-KGDH) and succinate dehydrogenase (SDH) activities were enhanced by NaCl and CdCl2 stresses, except for SDH under CdCl2 stress. Meanwhile, the expression levels of GADs, GABA-Ts SDHs, succinyl-CoA ligases (SCSs), and succinic acid aldehyde dehydrogenases (SSADHs) were also increased. Notably, significant increases in the key components of GABA shunt, Glu and GABA, were observed under both stresses. Soluble sugars and free amino acids were enhanced, whereas citrate, malate and succinate were almost inhibited by both NaCl and CdCl2 stresses except that citrate was not changed or just increased by 50-mM NaCl stress. Thus, these results suggested that the carbon-nitrogen balance could be altered by activating the GABA shunt when main TCA-cycle intermediates were inhibited under NaCl and CdCl2 stresses. This study can enhance the understanding about the functions of the GABA shunt in woody plants under abiotic stresses and may be applied to the genetic improvement of trees for phytoremediation.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Estrés Fisiológico
/
Carbono
/
Cloruro de Sodio
/
Cloruro de Cadmio
/
Populus
/
Ácido gamma-Aminobutírico
/
Nitrógeno
Idioma:
En
Año:
2020
Tipo del documento:
Article