Your browser doesn't support javascript.
loading
RNA-Seq of human whole blood: Evaluation of globin RNA depletion on Ribo-Zero library method.
Harrington, Christina A; Fei, Suzanne S; Minnier, Jessica; Carbone, Lucia; Searles, Robert; Davis, Brett A; Ogle, Kimberly; Planck, Stephen R; Rosenbaum, James T; Choi, Dongseok.
  • Harrington CA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA. harringc@ohsu.edu.
  • Fei SS; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA. harringc@ohsu.edu.
  • Minnier J; Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA.
  • Carbone L; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
  • Searles R; OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA.
  • Davis BA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, Oregon, USA.
  • Ogle K; Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA.
  • Planck SR; Knight Cardiovascular Institute, Oregon Health & Science University Portland, Oregon, USA.
  • Rosenbaum JT; 3181 Sam Jackson Park Rd, Oregon Health & Science University, Portland, Oregon, United States.
  • Choi D; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, Oregon, USA.
Sci Rep ; 10(1): 6271, 2020 04 14.
Article en En | MEDLINE | ID: mdl-32286338
ABSTRACT
Peripheral blood is a highly accessible biofluid providing a rich source of information about human physiology and health status. However, for studies of the blood transcriptome with RNA sequencing (RNA-Seq) techniques, high levels of hemoglobin mRNAs (hgbRNA) present in blood can occupy valuable sequencing space, impacting detection and quantification of non-hgbRNAs. In this study, we evaluated two methods for preparing ribosomal RNA (rRNA)-depleted sequencing libraries for RNA-Seq of whole blood, one of which is also designed to deplete hgbRNAs. Two experiments were performed one evaluating library performance across 6 human blood samples and the other examining library reproducibility and performance in a two-subject subset. We find that addition of hgbRNA depletion to the rRNA-depletion protocol for library preparation from blood RNA effectively reduces highly abundant hgbRNA reads; however, it does not result in a statistically significant increase in differentially expressed genes in our patient-control study. Bioinformatic removal of globin gene counts in non-hgbRNA depleted libraries provides improvement in overall performance of these libraries. We conclude that use of a standard ribosomal RNA depletion method for library preparation coupled with bioinformatic removal of globin gene counts is sufficient for reproducible and sensitive measurement of both coding and noncoding RNAs in the blood transcriptome.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Manejo de Especímenes / Sangre / Globinas / ARN / RNA-Seq Límite: Humans Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Manejo de Especímenes / Sangre / Globinas / ARN / RNA-Seq Límite: Humans Idioma: En Año: 2020 Tipo del documento: Article