Your browser doesn't support javascript.
loading
Membrane Environment Enables Ultrafast Isomerization of Amphiphilic Azobenzene.
Paternò, Giuseppe Maria; Colombo, Elisabetta; Vurro, Vito; Lodola, Francesco; Cimò, Simone; Sesti, Valentina; Molotokaite, Egle; Bramini, Mattia; Ganzer, Lucia; Fazzi, Daniele; D'Andrea, Cosimo; Benfenati, Fabio; Bertarelli, Chiara; Lanzani, Guglielmo.
  • Paternò GM; Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano Italy.
  • Colombo E; Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Largo Rosanna Benzi 10 16132 Genova Italy.
  • Vurro V; IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10 16132 Genova Italy.
  • Lodola F; Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano Italy.
  • Cimò S; Dipartimento di Fisica Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy.
  • Sesti V; Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano Italy.
  • Molotokaite E; Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta" Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy.
  • Bramini M; Dipartimento di Chimica Materiali e Ingegneria Chimica "Giulio Natta" Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy.
  • Ganzer L; Center for Nano Science and Technology Istituto Italiano di Tecnologia Via Pascoli 70/3 20133 Milano Italy.
  • Fazzi D; Center for Synaptic Neuroscience and Technology Istituto Italiano di Tecnologia Largo Rosanna Benzi 10 16132 Genova Italy.
  • D'Andrea C; IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10 16132 Genova Italy.
  • Benfenati F; Department of Applied Physics Faculty of Sciences University of Granada C/Fuentenueva s/n 18071 Granada Spain.
  • Bertarelli C; Dipartimento di Fisica Politecnico di Milano Piazza L. da Vinci 32 20133 Milano Italy.
  • Lanzani G; Department of Chemistry Institut für Physikalische Chemie University of Cologne Luxemburger Str. 116 D-50939 Köln Germany.
Adv Sci (Weinh) ; 7(8): 1903241, 2020 Apr.
Article en En | MEDLINE | ID: mdl-32328424
ABSTRACT
The non-covalent affinity of photoresponsive molecules to biotargets represents an attractive tool for achieving effective cell photo-stimulation. Here, an amphiphilic azobenzene that preferentially dwells within the plasma membrane is studied. In particular, its isomerization dynamics in different media is investigated. It is found that in molecular aggregates formed in water, the isomerization reaction is hindered, while radiative deactivation is favored. However, once protected by a lipid shell, the photochromic molecule reacquires its ultrafast photoisomerization capacity. This behavior is explained considering collective excited states that may form in aggregates, locking the conformational dynamics and redistributing the oscillator strength. By applying the pump probe technique in different media, an isomerization time in the order of 10 ps is identified and the deactivation in the aggregate in water is also characterized. Finally, it is demonstrated that the reversible modulation of membrane potential of HEK293 cells via illumination with visible light can be indeed related to the recovered trans→cis photoreaction in lipid membrane. These data fully account for the recently reported experiments in neurons, showing that the amphiphilic azobenzenes, once partitioned in the cell membrane, are effective light actuators for the modification of the electrical state of the membrane.
Palabras clave