Your browser doesn't support javascript.
loading
The Underlying Mechanism of HNO Production by the Myoglobin-Mediated Oxidation of Hydroxylamine.
Álvarez, Lucía; Suárez, Sebastián A; González, Pablo J; Brondino, Carlos D; Doctorovich, Fabio; Martí, Marcelo A.
  • Álvarez L; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Suárez SA; INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina.
  • González PJ; Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina.
  • Brondino CD; INQUIMAE-CONICET, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina.
  • Doctorovich F; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral y CONICET, S3000ZAA Santa Fe, Argentina.
  • Martí MA; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral y CONICET, S3000ZAA Santa Fe, Argentina.
Inorg Chem ; 59(12): 7939-7952, 2020 Jun 15.
Article en En | MEDLINE | ID: mdl-32436700
ABSTRACT
Azanone (HNO, nitroxyl) is a highly reactive molecule that, in the past few years, has drawn significant interest because of its pharmacological properties. However, the understanding of how, when, and where endogenous HNO is produced remains a matter of discussion. In this study, we examined the ability of myoglobin to produce HNO via the peroxidation of hydroxylamine with H2O2 using both experimental and computational approaches. The production of HNO was confirmed using an azanone selective electrochemical method and by the detection of N2O using FTIR. The catalytic capacity of myoglobin was characterized by the determination of the turnover number. The reaction kinetics of the hydroxylamine peroxidation were studied by both electrochemical and UV-vis methods. Further evidence about the reaction mechanism was obtained by EPR spectroscopy. Additionally, quantum mechanical/molecular mechanics experiments were performed to calculate the energy barrier for HNO production and to gain insight into the reaction mechanism. Our results confirm that myoglobin produces HNO via the peroxidation of hydroxylamine with a great catalytic capacity. In addition, our mechanistic study allows us to state that the Mb ferryl state is the most likely intermediate that reacts with hydroxylamine, yielding important evidence for endogenous HNO generation.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hidroxilamina / Mioglobina / Óxidos de Nitrógeno Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Hidroxilamina / Mioglobina / Óxidos de Nitrógeno Idioma: En Año: 2020 Tipo del documento: Article