Your browser doesn't support javascript.
loading
A two-step approach for improved exfoliation and cutting of boron nitride into boron nitride nanodisks with covalent functionalizations.
Zhang, Wei; Rahman, Md Mahbubur; Ahmed, Faiz; Lopa, Nasrin Siraj; Ge, Chuangye; Ryu, Taewook; Yoon, Sujin; Jin, Lei; Jang, Hohyoun; Kim, Whangi.
  • Zhang W; Department of Energy and Materials, Konkuk University, Chungju 380-701, Republic of Korea.
Nanotechnology ; 31(42): 425604, 2020 Jun 08.
Article en En | MEDLINE | ID: mdl-32512542
ABSTRACT
The synthesis of boron nitride nanodisks (BNNDs) with reducing the size and having fewer disk layers, and low optical band gap (E g) is essential for practical applications in electronics and optoelectronic devices. So far, the large-scale preparation of hydroxyl (-OH) and hydroperoxyl (-OOH) functionalized boron nitride nanosheets and BNNDs with reduced E g is still a challenge. This research demonstrates the scalable and solution process synthesis of hydroxyl (-OH) and hydroperoxyl (-OOH) functionalization of BNNDs at the edges and basal planes from pristine hexagonal boron nitride (h-BN) by the combination of modified Hummer's method and Fenton's chemistry. Modified Hummer's method induces exfoliation and cutting of the h-BN into BNNDs with a low percentage of -OH functionalization (6.90%), which is further exfoliated and cut by Fenton's reagent with improved -OH and -OOH functionalization (ca. 17.25%). The combination of these two methods allows us to reduce the size of the OH/OOH-BNNDs to ca. 200 nm with the number of disk layers in the range from ca. 6-11. Concurrently, the E g of h-BN was decreased from ca. 5.10 to ca. 3.58 eV for OH/OOH-BNNDs, which enables the possible application of OH/OOH-BNNDs in semiconductor electronics. The high percentage of -OH and -OOH functionalizations in the OH/OOH-BNNDs enablesg them to disperse in various solvents with high long-term stability.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2020 Tipo del documento: Article