Your browser doesn't support javascript.
loading
Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation.
Ho, Kung-Hsien; Yang, Xiaodun; Osipovich, Anna B; Cabrera, Over; Hayashi, Mansuo L; Magnuson, Mark A; Gu, Guoqiang; Kaverina, Irina.
  • Ho KH; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
  • Yang X; Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN.
  • Osipovich AB; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN.
  • Cabrera O; Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN.
  • Hayashi ML; Program of Developmental Biology and Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN.
  • Magnuson MA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN.
  • Gu G; Eli Lilly and Company, Indianapolis, IN.
  • Kaverina I; Eli Lilly and Company, Indianapolis, IN.
Diabetes ; 69(9): 1936-1947, 2020 09.
Article en En | MEDLINE | ID: mdl-32540877
ABSTRACT
The microtubule cytoskeleton of pancreatic islet ß-cells regulates glucose-stimulated insulin secretion (GSIS). We have reported that the microtubule-mediated movement of insulin vesicles away from the plasma membrane limits insulin secretion. High glucose-induced remodeling of microtubule network facilitates robust GSIS. This remodeling involves disassembly of old microtubules and nucleation of new microtubules. Here, we examine the mechanisms whereby glucose stimulation decreases microtubule lifetimes in ß-cells. Using real-time imaging of photoconverted microtubules, we demonstrate that high levels of glucose induce rapid microtubule disassembly preferentially in the periphery of individual ß-cells, and this process is mediated by the phosphorylation of microtubule-associated protein tau. Specifically, high glucose induces tau hyper-phosphorylation via glucose-responsive kinases GSK3, PKA, PKC, and CDK5. This causes dissociation of tau from and subsequent destabilization of microtubules. Consequently, tau knockdown in mouse islet ß-cells facilitates microtubule turnover, causing increased basal insulin secretion, depleting insulin vesicles from the cytoplasm, and impairing GSIS. More importantly, tau knockdown uncouples microtubule destabilization from glucose stimulation. These findings suggest that tau suppresses peripheral microtubules turning over to restrict insulin oversecretion in basal conditions and preserve the insulin pool that can be released following stimulation; high glucose promotes tau phosphorylation to enhance microtubule disassembly to acutely enhance GSIS.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas tau / Células Secretoras de Insulina / Secreción de Insulina / Glucosa / Microtúbulos Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas tau / Células Secretoras de Insulina / Secreción de Insulina / Glucosa / Microtúbulos Límite: Animals Idioma: En Año: 2020 Tipo del documento: Article