Your browser doesn't support javascript.
loading
Sirtuin 3 deficiency exacerbates diabetic cardiomyopathy via necroptosis enhancement and NLRP3 activation.
Song, Shu; Ding, Yue; Dai, Guo-Liang; Zhang, Yue; Xu, Meng-Ting; Shen, Jie-Ru; Chen, Ting-Ting; Chen, Yun; Meng, Guo-Liang.
  • Song S; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
  • Ding Y; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, 226001, China.
  • Dai GL; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
  • Zhang Y; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, 226001, China.
  • Xu MT; Department of Clinical Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
  • Shen JR; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
  • Chen TT; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, 226001, China.
  • Chen Y; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, 226001, China.
  • Meng GL; Key Laboratory of Inflammation and Molecular Drug Target of Jiangsu Province, Nantong University, Nantong, 226001, China.
Acta Pharmacol Sin ; 42(2): 230-241, 2021 Feb.
Article en En | MEDLINE | ID: mdl-32770173
ABSTRACT
Sirtuin 3 (SIRT3) is a potential therapeutic target for cardiovascular, metabolic, and other aging-related diseases. In this study, we investigated the role of SIRT3 in diabetic cardiomyopathy (DCM). Mice were injected with streptozotocin (STZ, 60 mg/kg, ip) to induce diabetes mellitus. Our proteomics analysis revealed that SIRT3 expression in the myocardium of diabetic mice was lower than that of control mice, as subsequently confirmed by real-time PCR and Western blotting. To explore the role of SIRT3 in DCM, SIRT3-knockout mice and 129S1/SvImJ wild-type mice were injected with STZ. We found that diabetic mice with SIRT3 deficiency exhibited aggravated cardiac dysfunction, increased lactate dehydrogenase (LDH) level in the serum, decreased adenosine triphosphate (ATP) level in the myocardium, exacerbated myocardial injury, and promoted myocardial reactive oxygen species (ROS) accumulation. Neonatal rat cardiomyocytes were transfected with SIRT3 siRNA, then exposed to high glucose (HG, 25.5 mM). We found that downregulation of SIRT3 further increased LDH release, decreased ATP level, suppressed the mitochondrial membrane potential, and elevated oxidative stress in HG-treated cardiomyocytes. SIRT3 deficiency further raised expression of necroptosis-related proteins including receptor-interacting protein kinase 1 (RIPK1), RIPK3, and cleaved caspase 3, and upregulated the expression of inflammation-related proteins including NLR family pyrin domain-containing protein 3 (NLRP3), caspase 1 p20, and interleukin-1ß both in vitro and in vivo. Collectively, SIRT3 deficiency aggravated hyperglycemia-induced mitochondrial damage, increased ROS accumulation, promoted necroptosis, possibly activated the NLRP3 inflammasome, and ultimately exacerbated DCM in the mice. These results suggest that SIRT3 can be a molecular intervention target for the prevention and treatment of DCM.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus Experimental / Sirtuina 3 / Cardiomiopatías Diabéticas / Proteína con Dominio Pirina 3 de la Familia NLR Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Diabetes Mellitus Experimental / Sirtuina 3 / Cardiomiopatías Diabéticas / Proteína con Dominio Pirina 3 de la Familia NLR Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article