Your browser doesn't support javascript.
loading
Computationally Guided Molecular Design to Minimize the LE/CT Gap in D-π-A Fluorinated Triarylboranes for Efficient TADF via D and π-Bridge Tuning.
Narsaria, Ayush K; Rauch, Florian; Krebs, Johannes; Endres, Peter; Friedrich, Alexandra; Krummenacher, Ivo; Braunschweig, Holger; Finze, Maik; Nitsch, Jörn; Bickelhaupt, F Matthias; Marder, Todd B.
  • Narsaria AK; Department of Theoretical Chemistry Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 Amsterdam NL-1081 HV The Netherlands.
  • Rauch F; Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Krebs J; Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Endres P; Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Friedrich A; Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Krummenacher I; Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Braunschweig H; Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Finze M; Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Nitsch J; Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Bickelhaupt FM; Institute for Inorganic Chemistry Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
  • Marder TB; Institute for Sustainable Chemistry & Catalysis with Boron Julius-Maximilians-Universität Würzburg Am Hubland Würzburg D-97074 Germany.
Adv Funct Mater ; 30(31): 2002064, 2020 Aug 03.
Article en En | MEDLINE | ID: mdl-32774198
ABSTRACT
In this combined experimental and theoretical study, a computational protocol is reported to predict the excited states in D-π-A compounds containing the B(FXyl)2 (FXyl = 2,6-bis(trifluoromethyl)phenyl) acceptor group for the design of new thermally activated delayed fluorescence (TADF) emitters. To this end, the effect of different donor and π-bridge moieties on the energy gaps between local and charge-transfer singlet and triplet states is examined. To prove this computationally aided design concept, the D-π-B(FXyl)2 compounds 1-5 were synthesized and fully characterized. The photophysical properties of these compounds in various solvents, polymeric film, and in a frozen matrix were investigated in detail and show excellent agreement with the computationally obtained data. Furthermore, a simple structure-property relationship is presented on the basis of the molecular fragment orbitals of the donor and the π-bridge, which minimize the relevant singlet-triplet gaps to achieve efficient TADF emitters.
Palabras clave