Your browser doesn't support javascript.
loading
Fruit setting rewires central metabolism via gibberellin cascades.
Shinozaki, Yoshihito; Beauvoit, Bertrand P; Takahara, Masaru; Hao, Shuhei; Ezura, Kentaro; Andrieu, Marie-Hélène; Nishida, Keiji; Mori, Kazuki; Suzuki, Yutaka; Kuhara, Satoshi; Enomoto, Hirofumi; Kusano, Miyako; Fukushima, Atsushi; Mori, Tetsuya; Kojima, Mikiko; Kobayashi, Makoto; Sakakibara, Hitoshi; Saito, Kazuki; Ohtani, Yuya; Bénard, Camille; Prodhomme, Duyen; Gibon, Yves; Ezura, Hiroshi; Ariizumi, Tohru.
  • Shinozaki Y; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Beauvoit BP; Japan Society for Promotion of Science, Kojimachi, Tokyo 102-0083, Japan.
  • Takahara M; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Hao S; Univ. Bordeaux, l'Institut National de Recherche en Agriculture, Alimentation et Environnement, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France.
  • Ezura K; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Andrieu MH; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Nishida K; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Mori K; Japan Society for Promotion of Science, Kojimachi, Tokyo 102-0083, Japan.
  • Suzuki Y; Univ. Bordeaux, l'Institut National de Recherche en Agriculture, Alimentation et Environnement, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave d'Ornon, France.
  • Kuhara S; Engineering Biology Research Center, Kobe University, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
  • Enomoto H; Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
  • Kusano M; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan.
  • Fukushima A; Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
  • Mori T; Department of Biosciences, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan.
  • Kojima M; Advanced Instrumental Analysis Center, Teikyo University, Utsunomiya, Tochigi 320-8551, Japan.
  • Kobayashi M; Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Sakakibara H; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.
  • Saito K; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Ohtani Y; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Bénard C; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Prodhomme D; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Gibon Y; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Ezura H; RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan.
  • Ariizumi T; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan.
Proc Natl Acad Sci U S A ; 117(38): 23970-23981, 2020 09 22.
Article en En | MEDLINE | ID: mdl-32883877
ABSTRACT
Fruit set is the process whereby ovaries develop into fruits after pollination and fertilization. The process is induced by the phytohormone gibberellin (GA) in tomatoes, as determined by the constitutive GA response mutant procera However, the role of GA on the metabolic behavior in fruit-setting ovaries remains largely unknown. This study explored the biochemical mechanisms of fruit set using a network analysis of integrated transcriptome, proteome, metabolome, and enzyme activity data. Our results revealed that fruit set involves the activation of central carbon metabolism, with increased hexoses, hexose phosphates, and downstream metabolites, including intermediates and derivatives of glycolysis, the tricarboxylic acid cycle, and associated organic and amino acids. The network analysis also identified the transcriptional hub gene SlHB15A, that coordinated metabolic activation. Furthermore, a kinetic model of sucrose metabolism predicted that the sucrose cycle had high activity levels in unpollinated ovaries, whereas it was shut down when sugars rapidly accumulated in vacuoles in fruit-setting ovaries, in a time-dependent manner via tonoplastic sugar carriers. Moreover, fruit set at least partly required the activity of fructokinase, which may pull fructose out of the vacuole, and this could feed the downstream pathways. Collectively, our results indicate that GA cascades enhance sink capacities, by up-regulating central metabolic enzyme capacities at both transcriptional and posttranscriptional levels. This leads to increased sucrose uptake and carbon fluxes for the production of the constituents of biomass and energy that are essential for rapid ovary growth during the initiation of fruit set.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Frutas / Giberelinas Tipo de estudio: Prognostic_studies Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Reguladores del Crecimiento de las Plantas / Frutas / Giberelinas Tipo de estudio: Prognostic_studies Idioma: En Año: 2020 Tipo del documento: Article