Your browser doesn't support javascript.
loading
Differential inflammatory potential of particulate matter (PM) size fractions from Imperial Valley, CA.
D'Evelyn, S M; Vogel, Cfa; Bein, K J; Lara, B; Laing, E A; Abarca, R A; Zhang, Q; Li, L; Li, J; Nguyen, T B; Pinkerton, K E.
  • D'Evelyn SM; Center for Health and the Environment, University of California, Davis.
  • Vogel C; Center for Health and the Environment, University of California, Davis.
  • Bein KJ; Department of Environmental Toxicology, University of California, Davis.
  • Lara B; Center for Health and the Environment, University of California, Davis.
  • Laing EA; KBI Biopharma, Inc.
  • Abarca RA; Center for Health and the Environment, University of California, Davis.
  • Zhang Q; Center for Health and the Environment, University of California, Davis.
  • Li L; Department of Environmental Toxicology, University of California, Davis.
  • Li J; Department of Environmental Toxicology, University of California, Davis.
  • Nguyen TB; Department of Environmental Toxicology, University of California, Davis.
  • Pinkerton KE; Department of Environmental Toxicology, University of California, Davis.
Atmos Environ (1994) ; 2442021 Jan 01.
Article en En | MEDLINE | ID: mdl-33184556
ABSTRACT
Particulate matter (PM) in Imperial Valley originates from a variety of sources such as agriculture, traffic at the border crossing, emissions from the cross-border city of Mexicali, and the drying lakebed of the Salton Sea. Dust storms in Imperial Valley, California regularly lead to exceedances of the federal air quality standards for PM10 (diameter less than 10 microns). To determine if there are differences in the composition and biological response to Imperial County PM by size, ambient PM samples were collected from a sampling unit stationed in the northern-most part of the valley, South of the Salton Sea. Ultrafine, fine, and coarse PM samples were collected and extracted separately. Chemical composition of each size fraction was obtained after extraction by using several analytical techniques, and biological response was measured by exposing a cell line of macrophages to particles and quantifying subsequent gene expression. Biological measurements demonstrated coarse PM induced an inflammatory response in macrophages measured in increases of inflammatory markers IL-1ß, IL-6, IL-8 and CXCL2 expression, whereas ultrafine and fine PM only demonstrated significant increases in expression of CYP1a1. These differential responses were due not only to particle size, but to the distinct chemical profiles of each size faction as well. Community groups in Imperial Valley have already completed several projects to learn more about local air quality, giving residents access to data that provides real-time levels of PM2.5 and PM10 as well as recommendations on health-based practices dependent on the current AQI (air quality index). However, to date there is no information on the composition or toxicity of ambient PM from the region. The data presented here could provide more definitive information on the toxicity of PM by size, and further inform the community on local air quality.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Guideline Idioma: En Año: 2021 Tipo del documento: Article