Your browser doesn't support javascript.
loading
Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere.
Saiz-Lopez, Alfonso; Travnikov, Oleg; Sonke, Jeroen E; Thackray, Colin P; Jacob, Daniel J; Carmona-García, Javier; Francés-Monerris, Antonio; Roca-Sanjuán, Daniel; Acuña, A Ulises; Dávalos, Juan Z; Cuevas, Carlos A; Jiskra, Martin; Wang, Feiyue; Bieser, Johannes; Plane, John M C; Francisco, Joseph S.
  • Saiz-Lopez A; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain; a.saiz@csic.es Oleg.Travnikov@msceast.org frjoseph@sas.upenn.edu.
  • Travnikov O; Meteorological Synthesizing Centre-East of EMEP, 115419 Moscow, Russia; a.saiz@csic.es Oleg.Travnikov@msceast.org frjoseph@sas.upenn.edu.
  • Sonke JE; Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France.
  • Thackray CP; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
  • Jacob DJ; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138.
  • Carmona-García J; Institut de Ciència Molecular, Universitat de València, 46071 València, Spain.
  • Francés-Monerris A; Departamento de Química Física, Universitat de València, 46100 València, Spain.
  • Roca-Sanjuán D; Université de Lorraine, CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), F-54000 Nancy, France.
  • Acuña AU; Institut de Ciència Molecular, Universitat de València, 46071 València, Spain.
  • Dávalos JZ; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain.
  • Cuevas CA; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain.
  • Jiskra M; Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), 28006 Madrid, Spain.
  • Wang F; Géosciences Environnement Toulouse, CNRS/Observatoire Midi-Pyrénées (OMP)/Université de Toulouse, 31400 Toulouse, France.
  • Bieser J; Department of Environmental Sciences, University of Basel, 4056 Basel, Switzerland.
  • Plane JMC; Department of Environment and Geography, Centre for Earth Observation Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
  • Francisco JS; Helmholtz-Zentrum Geethacht, Institute of Coastal Research, 21502 Geesthacht, Germany.
Proc Natl Acad Sci U S A ; 117(49): 30949-30956, 2020 12 08.
Article en En | MEDLINE | ID: mdl-33229529
ABSTRACT
Mercury (Hg), a global contaminant, is emitted mainly in its elemental form Hg0 to the atmosphere where it is oxidized to reactive HgII compounds, which efficiently deposit to surface ecosystems. Therefore, the chemical cycling between the elemental and oxidized Hg forms in the atmosphere determines the scale and geographical pattern of global Hg deposition. Recent advances in the photochemistry of gas-phase oxidized HgI and HgII species postulate their photodissociation back to Hg0 as a crucial step in the atmospheric Hg redox cycle. However, the significance of these photodissociation mechanisms on atmospheric Hg chemistry, lifetime, and surface deposition remains uncertain. Here we implement a comprehensive and quantitative mechanism of the photochemical and thermal atmospheric reactions between Hg0, HgI, and HgII species in a global model and evaluate the results against atmospheric Hg observations. We find that the photochemistry of HgI and HgII leads to insufficient Hg oxidation globally. The combined efficient photoreduction of HgI and HgII to Hg0 competes with thermal oxidation of Hg0, resulting in a large model overestimation of 99% of measured Hg0 and underestimation of 51% of oxidized Hg and ∼66% of HgII wet deposition. This in turn leads to a significant increase in the calculated global atmospheric Hg lifetime of 20 mo, which is unrealistically longer than the 3-6-mo range based on observed atmospheric Hg variability. These results show that the HgI and HgII photoreduction processes largely offset the efficiency of bromine-initiated Hg0 oxidation and reveal missing Hg oxidation processes in the troposphere.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Atmósfera / Procesos Fotoquímicos / Mercurio Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Atmósfera / Procesos Fotoquímicos / Mercurio Idioma: En Año: 2020 Tipo del documento: Article