Your browser doesn't support javascript.
loading
Comparison of Transfer Learning and Conventional Machine Learning Applied to Structural Brain MRI for the Early Diagnosis and Prognosis of Alzheimer's Disease.
Nanni, Loris; Interlenghi, Matteo; Brahnam, Sheryl; Salvatore, Christian; Papa, Sergio; Nemni, Raffaello; Castiglioni, Isabella.
  • Nanni L; Department of Information Engineering, University of Padua, Padua, Italy.
  • Interlenghi M; Institute of Molecular Bioimaging and Physiology, National Research Council of Italy (IBFM-CNR), Milan, Italy.
  • Brahnam S; Department of IT and Cybersecurity, Missouri State University, Springfield, MO, United States.
  • Salvatore C; Department of Science, Technology and Society, Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy.
  • Papa S; DeepTrace Technologies S.R.L., Milan, Italy.
  • Nemni R; Centro Diagnostico Italiano S.p.A., Milan, Italy.
  • Castiglioni I; Centro Diagnostico Italiano S.p.A., Milan, Italy.
Front Neurol ; 11: 576194, 2020.
Article en En | MEDLINE | ID: mdl-33250847
ABSTRACT
Alzheimer's Disease (AD) is the most common neurodegenerative disease, with 10% prevalence in the elder population. Conventional Machine Learning (ML) was proven effective in supporting the diagnosis of AD, while very few studies investigated the performance of deep learning and transfer learning in this complex task. In this paper, we evaluated the potential of ensemble transfer-learning techniques, pretrained on generic images and then transferred to structural brain MRI, for the early diagnosis and prognosis of AD, with respect to a fusion of conventional-ML approaches based on Support Vector Machine directly applied to structural brain MRI. Specifically, more than 600 subjects were obtained from the ADNI repository, including AD, Mild Cognitive Impaired converting to AD (MCIc), Mild Cognitive Impaired not converting to AD (MCInc), and cognitively-normal (CN) subjects. We used T1-weighted cerebral-MRI studies to train (1) an ensemble of five transfer-learning architectures pretrained on generic images; (2) a 3D Convolutional Neutral Network (CNN) trained from scratch on MRI volumes; and (3) a fusion of two conventional-ML classifiers derived from different feature extraction/selection techniques coupled to SVM. The AD-vs-CN, MCIc-vs-CN, MCIc-vs-MCInc comparisons were investigated. The ensemble transfer-learning approach was able to effectively discriminate AD from CN with 90.2% AUC, MCIc from CN with 83.2% AUC, and MCIc from MCInc with 70.6% AUC, showing comparable or slightly lower results with the fusion of conventional-ML systems (AD from CN with 93.1% AUC, MCIc from CN with 89.6% AUC, and MCIc from MCInc with AUC in the range of 69.1-73.3%). The deep-learning network trained from scratch obtained lower performance than either the fusion of conventional-ML systems and the ensemble transfer-learning, due to the limited sample of images used for training. These results open new prospective on the use of transfer learning combined with neuroimages for the automatic early diagnosis and prognosis of AD, even if pretrained on generic images.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Año: 2020 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Año: 2020 Tipo del documento: Article