Your browser doesn't support javascript.
loading
Temporal Resistome and Microbial Community Dynamics in an Intensive Aquaculture Facility with Prophylactic Antimicrobial Treatment.
Patil, Hemant J; Gatica, Joao; Zolti, Avihai; Benet-Perelberg, Ayana; Naor, Alon; Dror, Barak; Al Ashhab, Ashraf; Marman, Sophi; Hasan, Nur A; Colwell, Rita R; Sher, Daniel; Minz, Dror; Cytryn, Eddie.
  • Patil HJ; Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 15159, RishonLezion 7528809, Israel.
  • Gatica J; Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 15159, RishonLezion 7528809, Israel.
  • Zolti A; Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 91905, Israel.
  • Benet-Perelberg A; Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 15159, RishonLezion 7528809, Israel.
  • Naor A; Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 91905, Israel.
  • Dror B; Dor Aquaculture Research Station, Fisheries Department, Israel Ministry of Agriculture and Rural Development, Dor 3082000, Israel.
  • Al Ashhab A; Dor Aquaculture Research Station, Fisheries Department, Israel Ministry of Agriculture and Rural Development, Dor 3082000, Israel.
  • Marman S; Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, P.O. Box 15159, RishonLezion 7528809, Israel.
  • Hasan NA; Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 91905, Israel.
  • Colwell RR; The Dead Sea and Arava Science Center, Masada 86900, Israel.
  • Sher D; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
  • Minz D; Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
  • Cytryn E; CosmosID Inc., Rockville, MD 20742, USA.
Microorganisms ; 8(12)2020 Dec 13.
Article en En | MEDLINE | ID: mdl-33322131
ABSTRACT
Excessive use of antimicrobials in aquaculture is concerning, given possible environmental ramifications and the potential contribution to the spread of antimicrobial resistance (AR). In this study, we explored seasonal abundance of antimicrobial resistance genes and bacterial community composition in the water column of an intensive aquaculture pond stocked with Silver Carp (Hypophthalmichthys molitrix) prophylactically treated with sulfamethoprim (25% sulfadiazine; 5% trimethoprim), relative to an adjacent unstocked reservoir. Bacterial community composition was monitored using high-throughput sequencing of 16S rRNA gene amplicons in eight sampling profiles to determine seasonal dynamics, representing principal stages in the fish fattening cycle. In tandem, qPCR was applied to assess relative abundance of selected antimicrobial resistance genes (sul1, sul2, dfrA1, tetA and blaTEM) and class-1 integrons (int1). Concomitantly, resistomes were extrapolated from shotgun metagenomes in representative profiles. Analyses revealed increased relative abundance of sulfonamide and tetracycline resistance genes in fishpond-03, relative to pre-stocking and reservoir levels, whereas no significant differences were observed for genes encoding resistance to antimicrobials that were not used in the fishpond-03. Seasons strongly dictated bacterial community composition, with high abundance of cyanobacteria in summer and increased relative abundance of Flavobacterium in the winter. Our results indicate that prophylactic use of sulfonamides in intensive aquaculture ponds facilitates resistance suggesting that prophylactic use of these antimicrobials in aquaculture should be restricted.
Palabras clave