Your browser doesn't support javascript.
loading
Driving magnetic domains at the nanoscale by interfacial strain-induced proximity.
Valmianski, Ilya; Rodríguez, Arantxa Fraile; Rodríguez-Álvarez, Javier; García Del Muro, Montserrat; Wolowiec, Christian; Kronast, Florian; Ramírez, Juan Gabriel; Schuller, Ivan K; Labarta, Amílcar; Batlle, Xavier.
  • Valmianski I; Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093, USA.
  • Rodríguez AF; Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain. arantxa.fraile@ub.edu.
  • Rodríguez-Álvarez J; Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain. arantxa.fraile@ub.edu.
  • García Del Muro M; Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain. arantxa.fraile@ub.edu.
  • Wolowiec C; Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093, USA.
  • Kronast F; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany.
  • Ramírez JG; Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia.
  • Schuller IK; Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, CA 92093, USA.
  • Labarta A; Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain. arantxa.fraile@ub.edu.
  • Batlle X; Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain. arantxa.fraile@ub.edu.
Nanoscale ; 13(9): 4985-4994, 2021 Mar 12.
Article en En | MEDLINE | ID: mdl-33634814
ABSTRACT
We investigate the local nanoscale changes of the magnetic anisotropy of a Ni film subject to an inverse magnetostrictive effect by proximity to a V2O3 layer. Using temperature-dependent photoemission electron microscopy (PEEM) combined with X-ray magnetic circular dichroism (XMCD), direct images of the Ni spin alignment across the first-order structural phase transition (SPT) of V2O3 were obtained. We find an abrupt temperature-driven reorientation of the Ni magnetic domains across the SPT, which is associated with a large increase of the coercive field. Moreover, angular dependent ferromagnetic resonance (FMR) shows a remarkable change in the magnetic anisotropy of the Ni film across the SPT of V2O3. Micromagnetic simulations based on these results are in quantitative agreement with the PEEM data. Direct measurements of the lateral correlation length of the Ni domains from XMCD images show an increase of almost one order of magnitude at the SPT compared to room temperature, as well as a broad spatial distribution of the local transition temperatures, thus corroborating the phase coexistence of Ni anisotropies caused by the V2O3 SPT. We show that the rearrangement of the Ni domains is due to strain induced by the oxide layers' structural domains across the SPT. Our results illustrate the use of alternative hybrid systems to manipulate magnetic domains at the nanoscale, which allows for engineering of coercive fields for novel data storage architectures.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article