A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding.
Cell Rep
; 34(11): 108856, 2021 03 16.
Article
en En
| MEDLINE
| ID: mdl-33730590
Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.
Palabras clave
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Sitios de Unión de Anticuerpos
/
Reacciones Antígeno-Anticuerpo
/
Epítopos
Tipo de estudio:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Año:
2021
Tipo del documento:
Article