Your browser doesn't support javascript.
loading
Removing leakage-induced correlated errors in superconducting quantum error correction.
McEwen, M; Kafri, D; Chen, Z; Atalaya, J; Satzinger, K J; Quintana, C; Klimov, P V; Sank, D; Gidney, C; Fowler, A G; Arute, F; Arya, K; Buckley, B; Burkett, B; Bushnell, N; Chiaro, B; Collins, R; Demura, S; Dunsworth, A; Erickson, C; Foxen, B; Giustina, M; Huang, T; Hong, S; Jeffrey, E; Kim, S; Kechedzhi, K; Kostritsa, F; Laptev, P; Megrant, A; Mi, X; Mutus, J; Naaman, O; Neeley, M; Neill, C; Niu, M; Paler, A; Redd, N; Roushan, P; White, T C; Yao, J; Yeh, P; Zalcman, A; Chen, Yu; Smelyanskiy, V N; Martinis, John M; Neven, H; Kelly, J; Korotkov, A N; Petukhov, A G.
  • McEwen M; Department of Physics, University of California, Santa Barbara, CA, USA.
  • Kafri D; Google, Santa Barbara, CA, USA.
  • Chen Z; Google, Venice, CA, USA.
  • Atalaya J; Google, Santa Barbara, CA, USA.
  • Satzinger KJ; Google, Venice, CA, USA.
  • Quintana C; Google, Santa Barbara, CA, USA.
  • Klimov PV; Google, Santa Barbara, CA, USA.
  • Sank D; Google, Santa Barbara, CA, USA.
  • Gidney C; Google, Santa Barbara, CA, USA.
  • Fowler AG; Google, Santa Barbara, CA, USA.
  • Arute F; Google, Santa Barbara, CA, USA.
  • Arya K; Google, Santa Barbara, CA, USA.
  • Buckley B; Google, Santa Barbara, CA, USA.
  • Burkett B; Google, Santa Barbara, CA, USA.
  • Bushnell N; Google, Santa Barbara, CA, USA.
  • Chiaro B; Google, Santa Barbara, CA, USA.
  • Collins R; Google, Santa Barbara, CA, USA.
  • Demura S; Google, Santa Barbara, CA, USA.
  • Dunsworth A; Google, Santa Barbara, CA, USA.
  • Erickson C; Google, Santa Barbara, CA, USA.
  • Foxen B; Google, Santa Barbara, CA, USA.
  • Giustina M; Google, Santa Barbara, CA, USA.
  • Huang T; Google, Santa Barbara, CA, USA.
  • Hong S; Google, Santa Barbara, CA, USA.
  • Jeffrey E; Google, Santa Barbara, CA, USA.
  • Kim S; Google, Santa Barbara, CA, USA.
  • Kechedzhi K; Google, Santa Barbara, CA, USA.
  • Kostritsa F; Google, Venice, CA, USA.
  • Laptev P; Google, Santa Barbara, CA, USA.
  • Megrant A; Google, Santa Barbara, CA, USA.
  • Mi X; Google, Santa Barbara, CA, USA.
  • Mutus J; Google, Santa Barbara, CA, USA.
  • Naaman O; Google, Santa Barbara, CA, USA.
  • Neeley M; Google, Santa Barbara, CA, USA.
  • Neill C; Google, Santa Barbara, CA, USA.
  • Niu M; Google, Santa Barbara, CA, USA.
  • Paler A; Google, Venice, CA, USA.
  • Redd N; Johannes Kepler University, Linz, Austria.
  • Roushan P; University of Texas at Dallas, Richardson, TX, USA.
  • White TC; Google, Santa Barbara, CA, USA.
  • Yao J; Google, Santa Barbara, CA, USA.
  • Yeh P; Google, Santa Barbara, CA, USA.
  • Zalcman A; Google, Santa Barbara, CA, USA.
  • Chen Y; Google, Santa Barbara, CA, USA.
  • Smelyanskiy VN; Google, Santa Barbara, CA, USA.
  • Martinis JM; Google, Santa Barbara, CA, USA.
  • Neven H; Google, Venice, CA, USA.
  • Kelly J; Department of Physics, University of California, Santa Barbara, CA, USA.
  • Korotkov AN; Google, Santa Barbara, CA, USA.
  • Petukhov AG; Google, Santa Barbara, CA, USA.
Nat Commun ; 12(1): 1761, 2021 Mar 19.
Article en En | MEDLINE | ID: mdl-33741936
ABSTRACT
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated. During computation, unused high energy levels of the qubits can become excited, creating leakage states that are long-lived and mobile. Particularly for superconducting transmon qubits, this leakage opens a path to errors that are correlated in space and time. Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states. We test its performance with the bit-flip stabilizer code, a simplified version of the surface code for quantum error correction. We investigate the accumulation and dynamics of leakage during error correction. Using this protocol, we find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number. This demonstration provides a key step on the path towards scalable quantum computing.