Your browser doesn't support javascript.
loading
Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer.
Baca, Sylvan C; Takeda, David Y; Seo, Ji-Heui; Hwang, Justin; Ku, Sheng Yu; Arafeh, Rand; Arnoff, Taylor; Agarwal, Supreet; Bell, Connor; O'Connor, Edward; Qiu, Xintao; Alaiwi, Sarah Abou; Corona, Rosario I; Fonseca, Marcos A S; Giambartolomei, Claudia; Cejas, Paloma; Lim, Klothilda; He, Monica; Sheahan, Anjali; Nassar, Amin; Berchuck, Jacob E; Brown, Lisha; Nguyen, Holly M; Coleman, Ilsa M; Kaipainen, Arja; De Sarkar, Navonil; Nelson, Peter S; Morrissey, Colm; Korthauer, Keegan; Pomerantz, Mark M; Ellis, Leigh; Pasaniuc, Bogdan; Lawrenson, Kate; Kelly, Kathleen; Zoubeidi, Amina; Hahn, William C; Beltran, Himisha; Long, Henry W; Brown, Myles; Corey, Eva; Freedman, Matthew L.
  • Baca SC; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Takeda DY; The Eli and Edythe L. Broad Institute, Cambridge, MA, USA.
  • Seo JH; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Hwang J; Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
  • Ku SY; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Arafeh R; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Arnoff T; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Agarwal S; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Bell C; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • O'Connor E; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Qiu X; Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
  • Alaiwi SA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Corona RI; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Fonseca MAS; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Giambartolomei C; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Cejas P; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Lim K; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • He M; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Sheahan A; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Nassar A; Department of Obstetrics and Gynecology and the Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Berchuck JE; Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Brown L; Department of Obstetrics and Gynecology and the Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
  • Nguyen HM; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
  • Coleman IM; Istituto Italiano di Tecnologia, Genova, Italy.
  • Kaipainen A; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • De Sarkar N; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Nelson PS; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Morrissey C; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Korthauer K; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Pomerantz MM; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Ellis L; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Pasaniuc B; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Lawrenson K; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Kelly K; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
  • Zoubeidi A; Department of Urology, University of Washington, Seattle, WA, USA.
  • Hahn WC; Department of Urology, University of Washington, Seattle, WA, USA.
  • Beltran H; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Long HW; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Brown M; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Corey E; Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
  • Freedman ML; Department of Urology, University of Washington, Seattle, WA, USA.
Nat Commun ; 12(1): 1979, 2021 03 30.
Article en En | MEDLINE | ID: mdl-33785741
ABSTRACT
Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens. Here, we investigate the epigenomic basis of this resistance mechanism by profiling histone modifications in NEPC and PRAD patient-derived xenografts (PDXs) using chromatin immunoprecipitation and sequencing (ChIP-seq). We identify a vast network of cis-regulatory elements (N~15,000) that are recurrently activated in NEPC. The FOXA1 transcription factor (TF), which pioneers androgen receptor (AR) chromatin binding in the prostate epithelium, is reprogrammed to NE-specific regulatory elements in NEPC. Despite loss of dependence upon AR, NEPC maintains FOXA1 expression and requires FOXA1 for proliferation and expression of NE lineage-defining genes. Ectopic expression of the NE lineage TFs ASCL1 and NKX2-1 in PRAD cells reprograms FOXA1 to bind to NE regulatory elements and induces enhancer activity as evidenced by histone modifications at these sites. Our data establish the importance of FOXA1 in NEPC and provide a principled approach to identifying cancer dependencies through epigenomic profiling.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Próstata / Adenocarcinoma / Regulación Neoplásica de la Expresión Génica / Tumores Neuroendocrinos / Factor Nuclear 3-alfa del Hepatocito Tipo de estudio: Prognostic_studies Límite: Animals / Humans / Male Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Neoplasias de la Próstata / Adenocarcinoma / Regulación Neoplásica de la Expresión Génica / Tumores Neuroendocrinos / Factor Nuclear 3-alfa del Hepatocito Tipo de estudio: Prognostic_studies Límite: Animals / Humans / Male Idioma: En Año: 2021 Tipo del documento: Article