Your browser doesn't support javascript.
loading
Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density.
Folle, Lukas; Meinderink, Timo; Simon, David; Liphardt, Anna-Maria; Krönke, Gerhard; Schett, Georg; Kleyer, Arnd; Maier, Andreas.
  • Folle L; Pattern Recognition Lab-Computer Science, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany. lukas.folle@fau.de.
  • Meinderink T; Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Simon D; Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Liphardt AM; Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Krönke G; Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Schett G; Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Kleyer A; Deutsches Zentrum für Immuntherapie, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
  • Maier A; Department of Internal Medicine 3-Rheumatology and Immunology, FAU Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Sci Rep ; 11(1): 9697, 2021 05 06.
Article en En | MEDLINE | ID: mdl-33958664
ABSTRACT
Arthritis patients develop hand bone loss, which leads to destruction and functional impairment of the affected joints. High resolution peripheral quantitative computed tomography (HR-pQCT) allows the quantification of volumetric bone mineral density (vBMD) and bone microstructure in vivo with an isotropic voxel size of 82 micrometres. However, image-processing to obtain bone characteristics is a time-consuming process as it requires semi-automatic segmentation of the bone. In this work, a fully automatic vBMD measurement pipeline for the metacarpal (MC) bone using deep learning methods is introduced. Based on a dataset of HR-pQCT volumes with MC measurements for 541 patients with arthritis, a segmentation network is trained. The best network achieves an intersection over union as high as 0.94 and a Dice similarity coefficient of 0.97 while taking only 33 s to process a whole patient yielding a speedup between 2.5 and 4.0 for the whole workflow. Strong correlation between the vBMD measurements of the expert and of the automatic pipeline are achieved for the average bone density with 0.999 (Pearson) and 0.996 (Spearman's rank) with [Formula see text] for all correlations. A qualitative assessment of the network predictions and the manual annotations yields a 65.9% probability that the expert favors the network predictions. Further, the steps to integrate the pipeline into the clinical workflow are shown. In order to make these workflow improvements available to others, we openly share the code of this work.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Densidad Ósea / Huesos del Metacarpo / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Tomografía Computarizada por Rayos X / Densidad Ósea / Huesos del Metacarpo / Aprendizaje Profundo Tipo de estudio: Guideline / Prognostic_studies / Qualitative_research Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article