Your browser doesn't support javascript.
loading
Increased angiotensin II formation in the brain modulates cardiovascular homeostasis and erythropoiesis.
Rodrigues, André Felipe; Todiras, Mihail; Qadri, Fatimunnisa; Campagnole-Santos, Maria Jose; Alenina, Natalia; Bader, Michael.
  • Rodrigues AF; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
  • Todiras M; Department of Biology, Chemistry and Pharmacy, Free University of Berlin, Berlin, Germany.
  • Qadri F; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany.
  • Campagnole-Santos MJ; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
  • Alenina N; Nicolae Testemițanu State University of Medicine and Pharmacy, Chisinau, Moldova.
  • Bader M; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
Clin Sci (Lond) ; 135(11): 1353-1367, 2021 06 11.
Article en En | MEDLINE | ID: mdl-34013320
In spite of the fact that the modulatory effects of angiotensin II (Ang II) on the sympathetic nerve activity to targeted organs involved in blood pressure (BP) regulation is well acknowledged, the local production of this peptide in the brain and the consequences of enhanced central Ang II beyond the cardiovascular system are not yet well comprehended. In the present study, we generated and validated a new transgenic mouse line overexpressing the rat full-length angiotensinogen (Agt) protein specifically in the brain (Agt-Tg). Adult Agt-Tg mice presented overall increased gene expression of total Agt in the brain including brainstem and hypothalamus. In addition, the excess of Agt led to abundantly detectable brain Ang II levels as well as increased circulating copeptin levels. Agt-Tg displayed raised BP in acute recordings, while long-term telemetrically measured basal BP was indistinguishable from wild-types. Agt-Tg has altered peripheral renin-angiotensin system and vasomotor sympathetic tone homeostasis because renal gene expression analysis, plasma Ang II measurements and ganglionic blockade experiments revealed suppressed renin expression and reduced Ang II and higher neurogenic pressure response, respectively. Plasma and urine screens revealed apparently normal fluid and electrolyte handling in Agt-Tg. Interestingly, hematological analyses showed increased hematocrit in Agt-Tg caused by enhanced erythropoiesis, which was reverted by submitting the transgenic mice to a long-term peripheral sympathectomy protocol. Collectively, our findings suggest that Agt-Tg is a valuable tool to study not only brain Ang II formation and its modulatory effects on cardiovascular homeostasis but also its role in erythropoiesis control via autonomic modulation.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema Renina-Angiotensina / Angiotensina II / Eritropoyesis / Homeostasis Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Sistema Renina-Angiotensina / Angiotensina II / Eritropoyesis / Homeostasis Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article