Your browser doesn't support javascript.
loading
Large intrinsic anomalous Hall effect in SrIrO3 induced by magnetic proximity effect.
Yoo, Myoung-Woo; Tornos, J; Sander, A; Lin, Ling-Fang; Mohanta, Narayan; Peralta, A; Sanchez-Manzano, D; Gallego, F; Haskel, D; Freeland, J W; Keavney, D J; Choi, Y; Strempfer, J; Wang, X; Cabero, M; Vasili, Hari Babu; Valvidares, Manuel; Sanchez-Santolino, G; Gonzalez-Calbet, J M; Rivera, A; Leon, C; Rosenkranz, S; Bibes, M; Barthelemy, A; Anane, A; Dagotto, Elbio; Okamoto, S; Te Velthuis, S G E; Santamaria, J; Villegas, Javier E.
  • Yoo MW; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Tornos J; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Sander A; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Lin LF; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA.
  • Mohanta N; School of Physics, Southeast University, Nanjing, China.
  • Peralta A; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
  • Sanchez-Manzano D; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Gallego F; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Haskel D; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Freeland JW; Advanced Photon Source Argonne National Laboratory, Lemont, IL, USA.
  • Keavney DJ; Advanced Photon Source Argonne National Laboratory, Lemont, IL, USA.
  • Choi Y; Advanced Photon Source Argonne National Laboratory, Lemont, IL, USA.
  • Strempfer J; Advanced Photon Source Argonne National Laboratory, Lemont, IL, USA.
  • Wang X; Advanced Photon Source Argonne National Laboratory, Lemont, IL, USA.
  • Cabero M; Department of Physics, Bryn Mawr College, Bryn Mawr, PA, USA.
  • Vasili HB; IMDEA Nanoscience Campus Universidad Autonoma, Cantoblanco, Spain.
  • Valvidares M; Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain.
  • Sanchez-Santolino G; CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain.
  • Gonzalez-Calbet JM; CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Valles, Spain.
  • Rivera A; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Leon C; Centro Nacional de Microscopia Electronica, Universidad Complutense, Madrid, Spain.
  • Rosenkranz S; Department Quimica Inorganica, Facultad de Quimica, Universidad Complutense, Madrid, Spain.
  • Bibes M; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Barthelemy A; GFMC, Dept. Fisica de Materiales, Facultad de Fisica, Universidad Complutense, Madrid, Spain.
  • Anane A; Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
  • Dagotto E; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Okamoto S; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Te Velthuis SGE; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, France.
  • Santamaria J; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA.
  • Villegas JE; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Nat Commun ; 12(1): 3283, 2021 Jun 02.
Article en En | MEDLINE | ID: mdl-34078889
ABSTRACT
The anomalous Hall effect (AHE) is an intriguing transport phenomenon occurring typically in ferromagnets as a consequence of broken time reversal symmetry and spin-orbit interaction. It can be caused by two microscopically distinct mechanisms, namely, by skew or side-jump scattering due to chiral features of the disorder scattering, or by an intrinsic contribution directly linked to the topological properties of the Bloch states. Here we show that the AHE can be artificially engineered in materials in which it is originally absent by combining the effects of symmetry breaking, spin orbit interaction and proximity-induced magnetism. In particular, we find a strikingly large AHE that emerges at the interface between a ferromagnetic manganite (La0.7Sr0.3MnO3) and a semimetallic iridate (SrIrO3). It is intrinsic and originates in the proximity-induced magnetism present in the narrow bands of strong spin-orbit coupling material SrIrO3, which yields values of anomalous Hall conductivity and Hall angle as high as those observed in bulk transition-metal ferromagnets. These results demonstrate the interplay between correlated electron physics and topological phenomena at interfaces between 3d ferromagnets and strong spin-orbit coupling 5d oxides and trace an exciting path towards future topological spintronics at oxide interfaces.