Your browser doesn't support javascript.
loading
Ensemble learning application to discover new trypanothione synthetase inhibitors.
Alice, Juan I; Bellera, Carolina L; Benítez, Diego; Comini, Marcelo A; Duchowicz, Pablo R; Talevi, Alan.
  • Alice JI; Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
  • Bellera CL; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina.
  • Benítez D; Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, Buenos Aires, Argentina.
  • Comini MA; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CCT La Plata, La Plata, Argentina.
  • Duchowicz PR; Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay.
  • Talevi A; Group Redox Biology of Trypanosomes, Institut Pasteur Montevideo, Montevideo, Uruguay.
Mol Divers ; 25(3): 1361-1373, 2021 Aug.
Article en En | MEDLINE | ID: mdl-34264440
Trypanosomatid-caused diseases are among the neglected infectious diseases with the highest disease burden, affecting about 27 million people worldwide and, in particular, socio-economically vulnerable populations. Trypanothione synthetase (TryS) is considered one of the most attractive drug targets within the thiol-polyamine metabolism of typanosomatids, being unique, essential and druggable. Here, we have compiled a dataset of 401 T. brucei TryS inhibitors that includes compounds with inhibitory data reported in the literature, but also in-house acquired data. QSAR classifiers were derived and validated from such dataset, using publicly available and open-source software, thus assuring the portability of the obtained models. The performance and robustness of the resulting models were substantially improved through ensemble learning. The performance of the individual models and the model ensembles was further assessed through retrospective virtual screening campaigns. At last, as an application example, the chosen model-ensemble has been applied in a prospective virtual screening campaign on DrugBank 5.1.6 compound library. All the in-house scripts used in this study are available on request, whereas the dataset has been included as supplementary material.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Amida Sintasas / Inhibidores Enzimáticos / Descubrimiento de Drogas / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Amida Sintasas / Inhibidores Enzimáticos / Descubrimiento de Drogas / Aprendizaje Automático Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Año: 2021 Tipo del documento: Article