Your browser doesn't support javascript.
loading
Metabolic profiling of nanosilver toxicity in the gills of common carp.
Li, Qin-Qin; Xiang, Qian-Qian; Lian, Li-Hong; Chen, Zhi-Ying; Luo, Xia; Ding, Cheng-Zhi; Chen, Li-Qiang.
  • Li QQ; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University
  • Xiang QQ; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University
  • Lian LH; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China.
  • Chen ZY; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China.
  • Luo X; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University
  • Ding CZ; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University
  • Chen LQ; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, People's Republic of China; Yunnan International Joint Research Center for Hydro-Ecology Science & Engineering, Yunnan University
Ecotoxicol Environ Saf ; 222: 112548, 2021 Oct 01.
Article en En | MEDLINE | ID: mdl-34325196
ABSTRACT
Studies have shown silver nanoparticles (AgNPs) exposure can result in a series of toxic effects in fish gills. However, it is still unclear how AgNPs affect metabolite expression and their related molecular metabolic pathways in fish gills. In this study, we employed untargeted metabolomics to study the effects of AgNPs and silver supernatant ions on fish gill metabolites. The results showed that AgNPs can induce significant changes in 96 differentially expressed metabolites, which mainly affect amino acid metabolism and energy metabolism in fish gills. Among these metabolites, AgNPs specifically induce significant changes in 72 differentially expressed metabolites, including L-histidine, L-isoleucine, L-phenylalanine, and citric acid. These metabolites were significantly enriched in the pathways of aminoacyl-tRNA biosynthesis, ABC transporters, and the citrate cycle. In contrast, Ag+ supernatant exposure can specifically induce significant changes in 14 differentially expressed metabolites that mainly interfere with sphingolipid metabolism in fish gills. These specifically regulated fish gill metabolites include sphinganine, sphingosine, and phytosphingosine, which were significantly enriched in the sphingolipid metabolism pathway. Our results clearly reveal the effects and potential toxicity mechanisms of AgNPs on fish gill metabolites. Furthermore, our study further determined the unique functions of released silver ions in AgNPs toxicity in fish gills.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Carpas / Nanopartículas del Metal Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Carpas / Nanopartículas del Metal Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article