Your browser doesn't support javascript.
loading
Estimating a social cost of carbon for global energy consumption.
Rode, Ashwin; Carleton, Tamma; Delgado, Michael; Greenstone, Michael; Houser, Trevor; Hsiang, Solomon; Hultgren, Andrew; Jina, Amir; Kopp, Robert E; McCusker, Kelly E; Nath, Ishan; Rising, James; Yuan, Jiacan.
  • Rode A; Energy Policy Institute, University of Chicago, Chicago, IL, USA. aarode@uchicago.edu.
  • Carleton T; Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA.
  • Delgado M; National Bureau of Economic Research, Cambridge, MA, USA.
  • Greenstone M; Rhodium Group, New York, NY, USA.
  • Houser T; National Bureau of Economic Research, Cambridge, MA, USA.
  • Hsiang S; Department of Economics, University of Chicago, Chicago, IL, USA.
  • Hultgren A; Rhodium Group, New York, NY, USA.
  • Jina A; National Bureau of Economic Research, Cambridge, MA, USA. shsiang@berkeley.edu.
  • Kopp RE; Global Policy Laboratory, Goldman School of Public Policy, University of California, Berkeley, Berkeley, CA, USA. shsiang@berkeley.edu.
  • McCusker KE; Energy Policy Institute, University of Chicago, Chicago, IL, USA.
  • Nath I; Department of Economics, University of Chicago, Chicago, IL, USA.
  • Rising J; National Bureau of Economic Research, Cambridge, MA, USA.
  • Yuan J; Harris School of Public Policy, University of Chicago, Chicago, IL, USA.
Nature ; 598(7880): 308-314, 2021 10.
Article en En | MEDLINE | ID: mdl-34646000
Estimates of global economic damage caused by carbon dioxide (CO2) emissions can inform climate policy1-3. The social cost of carbon (SCC) quantifies these damages by characterizing how additional CO2 emissions today impact future economic outcomes through altering the climate4-6. Previous estimates have suggested that large, warming-driven increases in energy expenditures could dominate the SCC7,8, but they rely on models9-11 that are spatially coarse and not tightly linked to data2,3,6,7,12,13. Here we show that the release of one ton of CO2 today is projected to reduce total future energy expenditures, with most estimates valued between -US$3 and -US$1, depending on discount rates. Our results are based on an architecture that integrates global data, econometrics and climate science to estimate local damages worldwide. Notably, we project that emerging economies in the tropics will dramatically increase electricity consumption owing to warming, which requires critical infrastructure planning. However, heating reductions in colder countries offset this increase globally. We estimate that 2099 annual global electricity consumption increases by about 4.5 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in global mean surface temperature (GMST), whereas direct consumption of other fuels declines by about 11.3 exajoules (7 per cent of current global consumption) per one-degree-Celsius increase in GMST. Our finding of net savings contradicts previous research7,8, because global data indicate that many populations will remain too poor for most of the twenty-first century to substantially increase energy consumption in response to warming. Importantly, damage estimates would differ if poorer populations were given greater weight14.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factores Socioeconómicos / Temperatura / Cambio Climático / Dióxido de Carbono / Fuentes Generadoras de Energía Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Factores Socioeconómicos / Temperatura / Cambio Climático / Dióxido de Carbono / Fuentes Generadoras de Energía Tipo de estudio: Health_economic_evaluation / Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article