Your browser doesn't support javascript.
loading
Graphene-triphenyl phosphate (TPP) co-exposure in the marine environment: Interference with metabolism and immune regulation in mussel Mytilus galloprovincialis.
Li, Fei; Meng, Xiangjing; Wang, Xiaoqing; Ji, Chenglong; Wu, Huifeng.
  • Li F; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean
  • Meng X; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Ch
  • Wang X; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Ch
  • Ji C; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean
  • Wu H; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai 264003, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean
Ecotoxicol Environ Saf ; 227: 112904, 2021 Dec 20.
Article en En | MEDLINE | ID: mdl-34655885
ABSTRACT
Both immune regulation and endocrine systems are great challenges to marine organisms, and effective protocols for determining these adverse outcome pathways are limited, especially in vivo. The increasing usage of graphene nanomaterials can lead to the frequent exposure to marine organisms. Triphenyl phosphate (TPP), an organophosphate flame retardant, is frequently detected in natural environments. In this study, the combined toxic effects of co-exposure to graphene and TPP was investigated in Mytilus galloprovincialis using computational toxicology and multi-omics technology. Noticeably, graphene could disturb the membrane stability and increase the tissue accumulation of TPP. The adsorption behavior of TPP on graphene could inhibit the surface activity of graphene. In the digestive gland, transcriptomics analysis revealed the down-regulated genes in graphene + TPP treatment, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), sorbitol dehydrogenase (SORD), glutathione s-transferase mu 3 (GSTM3) and 4-aminobutyrate aminotransferase (ABAT), were mainly associated with oxidative stress and energy metabolism. Moreover, metabolic responses indicated that graphene + TPP could cause disturbances in energy metabolism and osmotic regulation marked by differentially altered ATP, glucose and taurine in mussels. These data underline the need for further knowledge on the potential interactions of nanomaterials with existing contaminants in marine organisms.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Mytilus / Retardadores de Llama / Grafito Tipo de estudio: Guideline Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Contaminantes Químicos del Agua / Mytilus / Retardadores de Llama / Grafito Tipo de estudio: Guideline Límite: Animals Idioma: En Año: 2021 Tipo del documento: Article