Your browser doesn't support javascript.
loading
Trimethylamine-N-Oxide Aggravates Kidney Injury via Activation of p38/MAPK Signaling and Upregulation of HuR.
Lai, Yunshi; Tang, Haie; Zhang, Xinrong; Zhou, Zhanmei; Zhou, Miaomiao; Hu, Zheng; Zhu, Fengxin; Zhang, Lei; Nie, Jing.
  • Lai Y; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Tang H; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Zhang X; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Zhou Z; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Zhou M; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Hu Z; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Zhu F; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Zhang L; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
  • Nie J; State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangdong Provincial Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical Universi
Kidney Blood Press Res ; 47(1): 61-71, 2022.
Article en En | MEDLINE | ID: mdl-34788763
ABSTRACT

BACKGROUND:

Trimethylamine-N-oxide (TMAO) is an intestinal metabolic toxin, which is produced by gut flora via metabolizing high-choline foods. TMAO is known to increase the risk of atherosclerosis and cardiovascular events in chronic kidney disease (CKD) patients.

OBJECTIVES:

The objective of this study was to explore the role and mechanism of TMAO aggravating kidney injury.

METHOD:

We used the five-sixths nephrectomy (5/6 Nx)-induced CKD rats to investigate whether TMAO could aggravate kidney damage and its possible mechanisms. Six weeks after the operation, the two groups of 5/6 Nx rats were subjected to intraperitoneal injection with 2.5% glucose peritoneal dialysis fluid (2.5% PDF) and 2.5% PDF plus TMAO 20 mg/kg/day.

RESULTS:

In this study, we provided evidence showing TMAO significantly aggravated renal failure as well as inflammatory cell infiltration and in five-sixths nephrectomy-induced CKD rats. We found that TMAO could upregulate inflammatory factors including MCP-1, TNF-α, IL-6, IL-1ß, and IL-18 by activating p38 phosphorylation and upregulation of human antigen R. TMAO could aggravate oxidative stress by upregulating NOX4 and downregulating SOD. The result also confirmed that TMAO promoted NLRP3 inflammasome formation as well as cleaved caspase-1 and IL-1ß activation in the kidney tissue.

CONCLUSIONS:

Taken together, the present study validates TMAO as a pro-inflammatory factor that causes renal inflammatory injury and renal function impairment. Inhibition of TMAO synthesis or promoting its clearance may be a potential therapeutic approach of CKD in the future.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Quinasas p38 Activadas por Mitógenos / Insuficiencia Renal Crónica / Proteína 1 Similar a ELAV / Metilaminas Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Transducción de Señal / Proteínas Quinasas p38 Activadas por Mitógenos / Insuficiencia Renal Crónica / Proteína 1 Similar a ELAV / Metilaminas Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article