Your browser doesn't support javascript.
loading
Optimization of hydrogen-ion storage performance of tungsten trioxide nanowires by niobium doping.
Wang, Liushun; Li, Dong; Zhou, Yulan; Fu, Shaohua; Peng, Yuehua; Yin, Yanling; Wang, Weike; Zhou, Weichang; Tang, Dongsheng.
  • Wang L; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Li D; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Zhou Y; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Fu S; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Peng Y; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Yin Y; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Wang W; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Zhou W; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
  • Tang D; Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, People's Republic of China.
Nanotechnology ; 33(10)2021 Dec 16.
Article en En | MEDLINE | ID: mdl-34847544
ABSTRACT
The transport and storage of ions within solid state structures is a fundamental limitation for fabricate more advanced electrochemical energy storage, memristor, and electrochromic devices. Crystallographic shear structure can be induced in the tungsten bronze structures composed of corner-sharing WO6octahedra by the addition of edge-sharing NbO6octahedra, which might provide more storage sites and more convenient transport channels for external ions such as hydrogen ions and alkali metal ions. Here, we show that Nb2O5·15WO3nanowires (Nb/W = 0.008) with long length-diameter ratio, smooth surface, and uniform diameter have been successfully synthesized by a simple hydrothermal method. The Nb2O5·15WO3nanowires do exhibit more advantages over h-WO3nanowires in electrochemical hydrogen ion storage such as smaller polarization, larger capacity (71 mAh g-1, at 10C, 1C = 100 mA g-1), better cycle performance (remain at 99% of the initial capacity after 200 cycles at 100C) and faster H+ions diffusion kinetics. It might be the crystallographic shear structure induced by Nb doping that does result in the marked improvement in the hydrogen-ion storage performance of WO3. Therefore, complex niobium tungsten oxide nanowires might offer great promise for the next generation of electrochemical energy and information storage devices.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article