Your browser doesn't support javascript.
loading
Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom-forming fungi.
Looney, Brian; Miyauchi, Shingo; Morin, Emmanuelle; Drula, Elodie; Courty, Pierre Emmanuel; Kohler, Annegret; Kuo, Alan; LaButti, Kurt; Pangilinan, Jasmyn; Lipzen, Anna; Riley, Robert; Andreopoulos, William; He, Guifen; Johnson, Jenifer; Nolan, Matt; Tritt, Andrew; Barry, Kerrie W; Grigoriev, Igor V; Nagy, László G; Hibbett, David; Henrissat, Bernard; Matheny, P Brandon; Labbé, Jesse; Martin, Francis M.
  • Looney B; Department of Biology, Clark University, Worcester, MA, 01610, USA.
  • Miyauchi S; UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France.
  • Morin E; UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France.
  • Drula E; Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France.
  • Courty PE; USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), INRAE, Marseille, 13009, France.
  • Kohler A; Agroécologie, AgroSup Dijon, CNRS, INRAE, Université de Bourgogne, Université de Bourgogne Franche- Comté, Dijon, 25000, France.
  • Kuo A; UMR Interactions Arbres/Microorganismes, Centre INRAE Grand Est-Nancy, INRAE, Université de Lorraine, Champenoux, 54000, France.
  • LaButti K; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Pangilinan J; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Lipzen A; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Riley R; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Andreopoulos W; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • He G; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Johnson J; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Nolan M; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Tritt A; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Barry KW; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Grigoriev IV; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Nagy LG; Lawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA, 94720, USA.
  • Hibbett D; Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
  • Henrissat B; Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, 6726, Hungary.
  • Matheny PB; Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1053, Hungary.
  • Labbé J; Department of Biology, Clark University, Worcester, MA, 01610, USA.
  • Martin FM; Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Univ., Marseille, 13009, France.
New Phytol ; 233(5): 2294-2309, 2022 03.
Article en En | MEDLINE | ID: mdl-34861049
ABSTRACT
The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae. We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae, Gloeopeniophorella convolvens. The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall-degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE 'nests', or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species-specific manner. The genome of G. convolvens possesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters). Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Micorrizas / Agaricales Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Micorrizas / Agaricales Tipo de estudio: Prognostic_studies Idioma: En Año: 2022 Tipo del documento: Article