Your browser doesn't support javascript.
loading
DeepRank: a deep learning framework for data mining 3D protein-protein interfaces.
Renaud, Nicolas; Geng, Cunliang; Georgievska, Sonja; Ambrosetti, Francesco; Ridder, Lars; Marzella, Dario F; Réau, Manon F; Bonvin, Alexandre M J J; Xue, Li C.
  • Renaud N; Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
  • Geng C; Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
  • Georgievska S; Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
  • Ambrosetti F; Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
  • Ridder L; Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
  • Marzella DF; Netherlands eScience Center, Science Park 140, 1098 XG, Amsterdam, The Netherlands.
  • Réau MF; Center for Molecular and Biomolecular Informatics, Radboudumc, Greet Grooteplein 26-28, 6525, Nijmegen, GA, The Netherlands.
  • Bonvin AMJJ; Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands.
  • Xue LC; Bijvoet Centre for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584, Utrecht, CH, The Netherlands. a.m.j.j.bonvin@uu.nl.
Nat Commun ; 12(1): 7068, 2021 12 03.
Article en En | MEDLINE | ID: mdl-34862392
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D CNNs with data sets containing millions of PPIs and supports both classification and regression. We demonstrate the performance of DeepRank on two distinct challenges: The classification of biological versus crystallographic PPIs, and the ranking of docking models. For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods, demonstrating the versatility of the framework for research in structural biology.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mapeo de Interacción de Proteínas / Minería de Datos / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Mapeo de Interacción de Proteínas / Minería de Datos / Aprendizaje Profundo Tipo de estudio: Prognostic_studies Idioma: En Año: 2021 Tipo del documento: Article