DeepRank: a deep learning framework for data mining 3D protein-protein interfaces.
Nat Commun
; 12(1): 7068, 2021 12 03.
Article
en En
| MEDLINE
| ID: mdl-34862392
Three-dimensional (3D) structures of protein complexes provide fundamental information to decipher biological processes at the molecular scale. The vast amount of experimentally and computationally resolved protein-protein interfaces (PPIs) offers the possibility of training deep learning models to aid the predictions of their biological relevance. We present here DeepRank, a general, configurable deep learning framework for data mining PPIs using 3D convolutional neural networks (CNNs). DeepRank maps features of PPIs onto 3D grids and trains a user-specified CNN on these 3D grids. DeepRank allows for efficient training of 3D CNNs with data sets containing millions of PPIs and supports both classification and regression. We demonstrate the performance of DeepRank on two distinct challenges: The classification of biological versus crystallographic PPIs, and the ranking of docking models. For both problems DeepRank is competitive with, or outperforms, state-of-the-art methods, demonstrating the versatility of the framework for research in structural biology.
Texto completo:
1
Banco de datos:
MEDLINE
Asunto principal:
Mapeo de Interacción de Proteínas
/
Minería de Datos
/
Aprendizaje Profundo
Tipo de estudio:
Prognostic_studies
Idioma:
En
Año:
2021
Tipo del documento:
Article