Your browser doesn't support javascript.
loading
Non-Gaussian Mechanical Motion via Single and Multiphonon Subtraction from a Thermal State.
Enzian, G; Freisem, L; Price, J J; Svela, A Ø; Clarke, J; Shajilal, B; Janousek, J; Buchler, B C; Lam, P K; Vanner, M R.
  • Enzian G; QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
  • Freisem L; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
  • Price JJ; Niels Bohr Institute, University of Copenhagen, Copenhagen 2100, Denmark.
  • Svela AØ; QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
  • Clarke J; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
  • Shajilal B; QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
  • Janousek J; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
  • Buchler BC; QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom.
  • Lam PK; Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom.
  • Vanner MR; Max Planck Institute for the Science of Light, Staudtstaße 2, 91058 Erlangen, Germany.
Phys Rev Lett ; 127(24): 243601, 2021 Dec 10.
Article en En | MEDLINE | ID: mdl-34951800
ABSTRACT
Quantum optical measurement techniques offer a rich avenue for quantum control of mechanical oscillators via cavity optomechanics. In particular, a powerful yet little explored combination utilizes optical measurements to perform heralded non-Gaussian mechanical state preparation followed by tomography to determine the mechanical phase-space distribution. Here, we experimentally perform heralded single-phonon and multiphonon subtraction via photon counting to a laser-cooled mechanical thermal state with a Brillouin optomechanical system at room temperature and use optical heterodyne detection to measure the s-parametrized Wigner distribution of the non-Gaussian mechanical states generated. The techniques developed here advance the state of the art for optics-based tomography of mechanical states and will be useful for a broad range of applied and fundamental studies that utilize mechanical quantum-state engineering and tomography.

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2021 Tipo del documento: Article