Your browser doesn't support javascript.
loading
Two R2R3-MYB genes cooperatively control trichome development and cuticular wax biosynthesis in Prunus persica.
Yang, Qiurui; Yang, Xianpeng; Wang, Lu; Zheng, Beibei; Cai, Yaming; Ogutu, Collins Otieno; Zhao, Lei; Peng, Qian; Liao, Liao; Zhao, Yun; Zhou, Hui; Han, Yuepeng.
  • Yang Q; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Yang X; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Wang L; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
  • Zheng B; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Cai Y; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Ogutu CO; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Zhao L; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Peng Q; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
  • Liao L; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Zhao Y; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China.
  • Zhou H; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China.
  • Han Y; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
New Phytol ; 234(1): 179-196, 2022 04.
Article en En | MEDLINE | ID: mdl-35023174
ABSTRACT
The fruit surface has an enormous impact on the external appearance and postharvest shelf-life of fruit. Here, we report two functionally redundant genes, PpMYB25 and PpMYB26, involved in regulation of fruit skin texture in peach. PpMYB25 can activate transcription of PpMYB26 and they both induce trichome development and cuticular wax accumulation, resulting in peach fruit with a fuzzy and dull appearance. By contrast, nonfunctional mutation of PpMYB25 caused by an insertional retrotransposon in the last exon in nectarine fails to activate transcription of PpMYB26, resulting in nectarine fruit with a smooth and shiny appearance due to loss of trichome initiation and decreased cuticular wax accumulation. Secondary cell wall biosynthesis in peach fruit pubescence is controlled by a transcriptional regulatory network, including the master regulator PpNAC43 and its downstream MYB transcription factors such as PpMYB42, PpMYB46 and PpMYB83. Our results show that PpMYB25 and PpMYB26 coordinately regulate fruit pubescence and cuticular wax accumulation and their simultaneous perturbation results in the origin of nectarine, which is botanically classified as a subspecies of peach.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Prunus persica Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Prunus persica Idioma: En Año: 2022 Tipo del documento: Article