Your browser doesn't support javascript.
loading
Plastome structure, evolution, and phylogeny of Selaginella.
Zhou, Xin-Mao; Zhao, Jing; Yang, Jian-Jun; Péchon, Timothée Le; Zhang, Liang; He, Zhao-Rong; Zhang, Li-Bing.
  • Zhou XM; School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China.
  • Zhao J; School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China.
  • Yang JJ; School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650091, China.
  • Péchon TL; Meise Botanic Garden, Nieuwelaan 38, 1860 Meise, Belgium; Fédération Wallonie-Bruxelles, Service Général de l'Enseignement supérieur et de la Recherche scientifique, 1 rue A. Lavallée, 1080 Brussels, Belgium.
  • Zhang L; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
  • He ZR; School of Life Sciences, Yunnan University, East Outer Ring Road, Chenggong District, Kunming, Yunnan 650500, China. Electronic address: zhrhe@ynu.edu.cn.
  • Zhang LB; Missouri Botanical Garden, 4344 Shaw Blvd, St. Louis, MO 63110, USA; Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, Sichuan 610041, China. Electronic address: Libing.Zhang@mobot.org.
Mol Phylogenet Evol ; 169: 107410, 2022 04.
Article en En | MEDLINE | ID: mdl-35031459
ABSTRACT
As one of the earliest land plant lineages, Selaginella is important for studying land plant evolution. It is the largest genus of lycophytes containing 700-800 species. Some unique characters of Selaginella plastomes have been reported, but based only on 20 species. There have been no plastome phylogenies of Selaginella based on a relatively large sampling, and no efforts have been made to resolve the phylogeny of the enigmatic Sinensis group whose relationships have been unclear based on small datasets. Here we investigated the structures of 59 plastomes representing 51 species covering all six subgenera and 18 sections of Selaginella except two sections and including the intriguing Sinensis group for the first time. Our major results include (1) the plastome size of Selaginella ranges tremendously from 78,492 bp to 187,632 bp; (2) there are numerous gene losses in Selaginella comparing with other lycophytes, Isoëtaceae and Lycopodiaceae; (3) the gene contents and plastome structures in Selaginella vary lineage-specifically and all infrageneric taxa are well supported in the plastome phylogeny; (4) the ndh gene family tends to lose or pseudogenize in those species with DR structure and without other short or medium repeats; (5) the short and medium repeat regions in SC mediate many conformations causing diverse and complex plastome structures, and six new conformations are discovered; (6) forty-eight species sampled have high GC content (>50%) but three species in the Sinensis group have âˆ¼ 30% GC content in plastomes, similar to most vascular plants; (7) the Sinensis group is monophyletic, includes at least two subgroups, and has the smallest plastomes in land plants except some parasitic plants, and their plastomes do not contain any tRNAs; (8) the younger lineages in Selaginella tend to have higher GC content, whereas the older lineages tend to have lower GC content; and (9) because of incomplete genomic data and abnormal structures or some unknown reasons, even the concatenated plastomes could not well resolve the phylogenetic relationships in Selaginella with confidence, highlighting the difficulty in resolving the phylogeny and evolution of this particularly important land plant lineage.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Selaginellaceae / Genoma de Plastidios Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Selaginellaceae / Genoma de Plastidios Idioma: En Año: 2022 Tipo del documento: Article