Your browser doesn't support javascript.
loading
Mechanism of spindle pole organization and instability in human oocytes.
So, Chun; Menelaou, Katerina; Uraji, Julia; Harasimov, Katarina; Steyer, Anna M; Seres, K Bianka; Bucevicius, Jonas; Lukinavicius, Grazvydas; Möbius, Wiebke; Sibold, Claus; Tandler-Schneider, Andreas; Eckel, Heike; Moltrecht, Rüdiger; Blayney, Martyn; Elder, Kay; Schuh, Melina.
  • So C; Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Menelaou K; Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Uraji J; Bourn Hall Clinic, Cambridge, UK.
  • Harasimov K; Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Steyer AM; Bourn Hall Clinic, Cambridge, UK.
  • Seres KB; Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Bucevicius J; Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Lukinavicius G; Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Möbius W; Bourn Hall Clinic, Cambridge, UK.
  • Sibold C; Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Tandler-Schneider A; Chromatin Labeling and Imaging Group, Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Eckel H; Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
  • Moltrecht R; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
  • Blayney M; Fertility Center Berlin, Berlin, Germany.
  • Elder K; Fertility Center Berlin, Berlin, Germany.
  • Schuh M; Kinderwunschzentrum Göttingen, Göttingen, Germany.
Science ; 375(6581): eabj3944, 2022 02 11.
Article en En | MEDLINE | ID: mdl-35143306
Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oocitos / Cinesinas / Proteínas de Ciclo Celular / Polos del Huso / Huso Acromático Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Oocitos / Cinesinas / Proteínas de Ciclo Celular / Polos del Huso / Huso Acromático Tipo de estudio: Prognostic_studies Límite: Animals / Female / Humans Idioma: En Año: 2022 Tipo del documento: Article