Your browser doesn't support javascript.
loading
Mitochondrial dysfunction and oxidative stress contribute to cognitive and motor impairment in FOXP1 syndrome.
Wang, Jing; Fröhlich, Henning; Torres, Felipe Bodaleo; Silva, Rangel Leal; Poschet, Gernot; Agarwal, Amit; Rappold, Gudrun A.
  • Wang J; Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University Hospital, D-69120 Heidelberg, Germany.
  • Fröhlich H; Department of Human Molecular Genetics, Institute of Human Genetics, Heidelberg University Hospital, D-69120 Heidelberg, Germany.
  • Torres FB; Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, D-69120 Heidelberg, Germany.
  • Silva RL; Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, D-69120 Heidelberg, Germany.
  • Poschet G; Metabolomics Core Technology Platform, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany.
  • Agarwal A; Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, D-69120 Heidelberg, Germany.
  • Rappold GA; Interdisciplinary Center for Neurosciences, University of Heidelberg, D-69120 Heidelberg, Germany.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article en En | MEDLINE | ID: mdl-35165191
ABSTRACT
FOXP1 syndrome caused by haploinsufficiency of the forkhead box protein P1 (FOXP1) gene is a neurodevelopmental disorder that manifests motor dysfunction, intellectual disability, autism, and language impairment. In this study, we used a Foxp1+/- mouse model to address whether cognitive and motor deficits in FOXP1 syndrome are associated with mitochondrial dysfunction and oxidative stress. Here, we show that genes with a role in mitochondrial biogenesis and dynamics (e.g., Foxo1, Pgc-1α, Tfam, Opa1, and Drp1) were dysregulated in the striatum of Foxp1+/- mice at different postnatal stages. Furthermore, these animals exhibit a reduced mitochondrial membrane potential and complex I activity, as well as decreased expression of the antioxidants superoxide dismutase 2 (Sod2) and glutathione (GSH), resulting in increased oxidative stress and lipid peroxidation. These features can explain the reduced neurite branching, learning and memory, endurance, and motor coordination that we observed in these animals. Taken together, we provide strong evidence of mitochondrial dysfunction in Foxp1+/- mice, suggesting that insufficient energy supply and excessive oxidative stress underlie the cognitive and motor impairment in FOXP1 deficiency.
Asunto(s)
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Represoras / Factores de Transcripción Forkhead / Trastornos Motores / Discapacidad Intelectual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Proteínas Represoras / Factores de Transcripción Forkhead / Trastornos Motores / Discapacidad Intelectual Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Año: 2022 Tipo del documento: Article