Your browser doesn't support javascript.
loading
Binding events through the mutual synchronization of spintronic nano-neurons.
Romera, Miguel; Talatchian, Philippe; Tsunegi, Sumito; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Cros, Vincent; Bortolotti, Paolo; Ernoult, Maxence; Querlioz, Damien; Grollier, Julie.
  • Romera M; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
  • Talatchian P; GFMC, Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040, Madrid, Spain.
  • Tsunegi S; Unidad Asociada UCM/CSIC, Laboratorio de Heteroestructuras con Aplicación en Espintrónica, 28049, Madrid, Spain.
  • Yakushiji K; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
  • Fukushima A; Université Grenoble Alpes, CEA, CNRS, Grenoble INP, SPINTEC, 38000, Grenoble, France.
  • Kubota H; National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
  • Yuasa S; National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
  • Cros V; National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
  • Bortolotti P; National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
  • Ernoult M; National Institute of Advanced Industrial Science and Technology (AIST), Spintronics Research Center, Tsukuba, Ibaraki, 305-8568, Japan.
  • Querlioz D; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
  • Grollier J; Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767, Palaiseau, France.
Nat Commun ; 13(1): 883, 2022 02 15.
Article en En | MEDLINE | ID: mdl-35169115
ABSTRACT
The brain naturally binds events from different sources in unique concepts. It is hypothesized that this process occurs through the transient mutual synchronization of neurons located in different regions of the brain when the stimulus is presented. This mechanism of 'binding through synchronization' can be directly implemented in neural networks composed of coupled oscillators. To do so, the oscillators must be able to mutually synchronize for the range of inputs corresponding to a single class, and otherwise remain desynchronized. Here we show that the outstanding ability of spintronic nano-oscillators to mutually synchronize and the possibility to precisely control the occurrence of mutual synchronization by tuning the oscillator frequencies over wide ranges allows pattern recognition. We demonstrate experimentally on a simple task that three spintronic nano-oscillators can bind consecutive events and thus recognize and distinguish temporal sequences. This work is a step forward in the construction of neural networks that exploit the non-linear dynamic properties of their components to perform brain-inspired computations.
Asunto(s)

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Redes Neurales de la Computación / Sincronización Cortical / Red Nerviosa Límite: Animals / Humans Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Asunto principal: Encéfalo / Redes Neurales de la Computación / Sincronización Cortical / Red Nerviosa Límite: Animals / Humans Idioma: En Año: 2022 Tipo del documento: Article