Your browser doesn't support javascript.
loading
Experimental evidence for long-distance electrodynamic intermolecular forces.
Lechelon, Mathias; Meriguet, Yoann; Gori, Matteo; Ruffenach, Sandra; Nardecchia, Ilaria; Floriani, Elena; Coquillat, Dominique; Teppe, Frédéric; Mailfert, Sébastien; Marguet, Didier; Ferrier, Pierre; Varani, Luca; Sturgis, James; Torres, Jeremie; Pettini, Marco.
  • Lechelon M; Aix-Marseille Univ., Université de Toulon, CNRS, Marseille, France.
  • Meriguet Y; Centre de Physique Théorique, CNRS, Marseille, France.
  • Gori M; Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Univ., CNRS, Inserm, Marseille, France.
  • Ruffenach S; Institut d'Electronique et des Systèmes, University of Montpellier, CNRS, Montpellier, France.
  • Nardecchia I; Laboratoire Charles Coulomb, University of Montpellier, CNRS, Montpellier, France.
  • Floriani E; Aix-Marseille Univ., Université de Toulon, CNRS, Marseille, France.
  • Coquillat D; Centre de Physique Théorique, CNRS, Marseille, France.
  • Teppe F; Quantum Biology Lab, Howard University, 2400 6th St NW, Washington, DC 20059, USA.
  • Mailfert S; Laboratoire Charles Coulomb, University of Montpellier, CNRS, Montpellier, France.
  • Marguet D; Aix-Marseille Univ., Université de Toulon, CNRS, Marseille, France.
  • Ferrier P; Centre de Physique Théorique, CNRS, Marseille, France.
  • Varani L; Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Univ., CNRS, Inserm, Marseille, France.
  • Sturgis J; Aix-Marseille Univ., Université de Toulon, CNRS, Marseille, France.
  • Torres J; Centre de Physique Théorique, CNRS, Marseille, France.
  • Pettini M; Laboratoire Charles Coulomb, University of Montpellier, CNRS, Montpellier, France.
Sci Adv ; 8(7): eabl5855, 2022 Feb 18.
Article en En | MEDLINE | ID: mdl-35171677
ABSTRACT
Both classical and quantum electrodynamics predict the existence of dipole-dipole long-range electrodynamic intermolecular forces; however, these have never been hitherto experimentally observed. The discovery of completely new and unanticipated forces acting between biomolecules could have considerable impact on our understanding of the dynamics and functioning of the molecular machines at work in living organisms. Here, using two independent experiments, on the basis of different physical effects detected by fluorescence correlation spectroscopy and terahertz spectroscopy, respectively, we demonstrate experimentally the activation of resonant electrodynamic intermolecular forces. This is an unprecedented experimental proof of principle of a physical phenomenon that, having been observed for biomacromolecules and with long-range action (up to 1000 Å), could be of importance for biology. In addition to thermal fluctuations that drive molecular motion randomly, these resonant (and thus selective) electrodynamic forces may contribute to molecular encounters in the crowded cellular space.