Your browser doesn't support javascript.
loading
Interfacial Reviving of the Degraded LiNi0.8 Co0.1 Mn0.1 O2 Cathode by LiPO3 Repair Strategy.
Feng, Ze; Zhang, Shan; Huang, Xiaobing; Ren, Yurong; Sun, Dan; Tang, Yougen; Yan, Qunxuan; Wang, Haiyan.
  • Feng Z; Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
  • Zhang S; Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
  • Huang X; Hunan Provincial Key Laboratory for Control Technology of Distributed Electric Propulsion Aircraft, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Changde, 415000, P. R. China.
  • Ren Y; School of Materials Science and Engineering, Jiangsu Province Intelligent Manufacturing Technology Engineering Research Center for the New Energy Vehicle Power Battery, Changzhou University, Changzhou, 213164, P. R. China.
  • Sun D; Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
  • Tang Y; Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
  • Yan Q; Hunan Keyking Recycling Technology Co. Ltd., Hengyang, 421008, P. R. China.
  • Wang H; Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China.
Small ; 18(16): e2107346, 2022 Apr.
Article en En | MEDLINE | ID: mdl-35254003
ABSTRACT
Nickel-rich cathode materials, owing to their high energy density and low cost, are considered to be one of the cathodes with the most potential in next-generation lithium-ion batteries. Unfortunately, this kind of cathode with highly active surface is easy to react with H2 O and CO2 when exposed to ambient air, resulting in the formation of lithium impurities and interfacial phase transition as well as deterioration of the electrochemical properties. In this work, the evolution mechanism of the structure and interface of LiNi0.8 Co0.1 Mn0.1 O2 during air-exposure is systematically investigated. Furthermore, a facile reviving strategy is proposed to restore the degraded LiNi0.8 Co0.1 Mn0.1 O2 by using LiPO3 as the repair agent. The lithium impurities on the surface of the degraded sample can transform into the repair/coating layer, and part of the rock salt phase on the subsurface can revive to layered phase after repair heat treatment. As a result, the optimized cathode delivers an initial discharge capacity of 198.3 mAh g-1 at 0.1C and a capacity retention of 85.5% after 50 cycles. Although slightly lower than the bare sample (201 mAh g-1 and 88%), they are obviously higher than the exposed samples (166.5 mAh g-1 and 40.4%). The regenerated electrochemical properties should be attributed to the multifunctional repair layer that can efficiently reduce the surface lithium impurities, prevent the corrosion of electrolyte, and improve the interfacial Li+ diffusion kinetics. This work can effectively reduce the waste of the degraded Ni-rich ternary materials and realize the transformation of "waste" into wealth.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article