Your browser doesn't support javascript.
loading
Insight into urban PM2.5 chemical composition and environmentally persistent free radicals attributed human lung epithelial cytotoxicity.
Li, Hanhan; Zhao, Zhen; Luo, Xiao-San; Fang, Guodong; Zhang, Dong; Pang, Yuting; Huang, Weijie; Mehmood, Tariq; Tang, Mingwei.
  • Li H; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
  • Zhao Z; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
  • Luo XS; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China. Electronic address: xsluo@nuist.edu.cn.
  • Fang G; Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
  • Zhang D; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
  • Pang Y; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China; Zhejiang Institute of Meteorological Sciences, Hangzhou 310008, China.
  • Huang W; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
  • Mehmood T; College of Environment, Hohai University, Nanjing, China.
  • Tang M; International Center for Ecology, Meteorology, and Environment, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
Ecotoxicol Environ Saf ; 234: 113356, 2022 Apr 01.
Article en En | MEDLINE | ID: mdl-35255246
Fine particulate matter (PM2.5) is detrimental to the human respiratory system. However, the toxicity of PM2.5 and its associated potentially harmful species, notably novel pollutants like environmentally persistent free radicals (EPFRs), remains unclear. Therefore, one-year site monitoring and ambient air PM2.5 sampling in the Nanjing urban area was designed to investigate the relationships between chemical compositions (carbon fractions, metallic elements, and water-soluble ions) and EPFRs, and change in cytotoxicity with varying PM2.5 components. Oxidative stress (reactive oxygen species, ROS), inflammatory injury (IL-6 and TNF-α), and membrane injury (LDH) of human lung epithelial cells (A549) induced by PM2.5 were analyzed using in vitro cytotoxicity test. Both the composition and toxicity of PM2.5 from different seasons were compared. The average daily exposure of urban PM2.5 associated EPFRs load in Nanjing were 2.29 × 1011 spin m-3. Their exposure concentration and cytotoxic damage ability were stronger in the cold season than warm. The particle compositions of metals and carbon fractions were significantly positively correlated with EPFRs. The airborne EPFRs, organic carbon (OC), and heavy metal Cu, As, and Pb may pose principal cell damage ability, which is worthy of further study interlinking aerosol pollution and health risks.
Palabras clave

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article

Texto completo: 1 Banco de datos: MEDLINE Idioma: En Año: 2022 Tipo del documento: Article